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1 Introduction: Central Simple Algebras

Azumaya algebras are introduced as generalized or global versions of central
simple algebras. So the first part of this seminar will be about central simple
algebras.

Definition 1.1. A ring R is called simple if 0 and R are the only two-sided
ideals.

Simple rings are only interesting if they are noncommutative because we
have the following:

Proposition 1.2. If R is a commutative, simple ring. Then R is a field.

Proof. Take x a nonzero element in R, then Rx is a nonzero twosided ideal and
hence is equal to R. In particular 1 ∈ Rx and thus x is invertible.

Definition 1.3. Let k be a field andA a finite dimensional associative k-algebra.
Then A is called a central simple algebra (CSA) over k if A is a simple ring and
Z(A) = k

Note that the inclusion of k in the center of A is automatic as A is a k
algebra.

Example 1.4. Let n be some natural number, then the matrix ring Mn(k) is
a CSA over k. It obviously has dimension n2 over k so we only need to check
that it is central and simple.
To see this, let eij denote the matrix with a 1 at position (i, j) and zeroes at all
other positions, i.e.

eij =



0 0 · · · 0

0
. . .

... 1
. . .

0 0


Then for a matrix eiiM = Meii for all i implies that M is diagonal and eijM =
Meij for all i and j implies that all entries on the diagonal must be the same.
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Hence a central matrix must be a scalar matrix and obviously all scalar matrices
are central. In a similar way one can show that any nonzero ideal must be Mn(k)
because suppose I is some nonzero ideal and M ∈ I \ {0}. Suppose mij 6= 0
then eii = (mij)

−1 · eiiMeij ∈ I and similarly for all l: ell = elieiieil ∈ I, hence

Idn =

n∑
l=1

ell ∈ I

Although not every central simple algebra over a field is a matrix ring over
this field, the next theorems show that they are closely related to matrix rings.

Theorem 1.5 (Wedderburn (it is a special case of the more general Artin-Wed-
derburn Theorem)). Let A be a CSA over k. Then there is a unique division
algebra D (i.e. a division ring which is a algebra over k) and a positive integer
n such that

A ∼= Mn(D)

Remark. The division algebra D in the above theorem is automatically a cen-
tral k-algebra because

k = Z(A) = Z(Mn(D)) = Z(D)

Corollary 1.6. If k is algebraically closed then any CSA over k is a matrix
ring.

Proof. By the Wedderburn Theorem it suffices to prove that a finite dimensional
division algebra D over k is automatically trivial (i.e. D = k). So suppose by
way of contradiction that x ∈ D \k. As x is invertible in D there is an inclusion
k(x) ⊂ D. As D is finite dimensional over k, so is k(x) and thus k(x) = k[x]
is a finite algebraic extension of k. A contradiction with the fact that k is
algebraically closed.

Corollary 1.7. The dimension of a CSA over a field is always a square.

Proof. If A is a CSA over k, then obviously A ⊗k k is a CSA of the same
dimension over the algebraic closure k. But by the above the latter must be a
matrix ring.

Another useful notion is that of a splitting field:

Theorem 1.8. Let A be a CSA over k of dimension n2. A splitting field for
A is a field extension F of k such that A⊗k F ∼= Mn(F ). Such a splitting field
always exists and can be chosen to be separable over k, in particular we can
choose F = k if k is separably closed.

Proof. By the Wedderburn Theorem A ∼= Mi(D) for some division algebra D
over k. As Mi(Mj(F )) ∼= Mi·j(F ) and Mi(D) ⊗k F ∼= Mi(D ⊗k F ), it hence
suffices to prove that any (central) division algebra D over k admits a splitting
field. It is then known that F can be chosen as any maximal subfield of D in
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which case [F : k] = n. Moreover at least one of these maximal subfields is
separable over k. See [Coh03, Corollary 5.1.12, Corollary 5.2.7, Theorem 5.2.8]
for the details.

The following result is obvious but interesting:

Proposition 1.9. If A and B are CSAs over k, then so is A⊗k B.

Lastly we say something about 4-dimensional CSAs. We have the following
theorem

Theorem 1.10. Let k be a field of characteristic different from 2 and let A be
a 4-dimensional k-algebra, then the following are equivalent

i) A is a CSA over k

ii) There are a, b ∈ k \ {0} and a k-basis {1, i, j, k} for A such that the mul-
tiplication on A is given by

* i2 = a

* j2 = b

* ij = k = −ji

Proof. We quickly sketch both directions

ii)⇒ i) This is done by some explicit computations similar to the example of a
matrix ring.

i)⇒ ii) By the Wedderburn Theorem, A is either a matrix ring or a division
algebra. In the first case we choose

i =

[
0 1
−1 0

]
, j =

[
0 1
1 0

]
, a = −1, b = 1

for the second case we first note that for any x ∈ A: 1,x and x2 are
necessarily linearly dependent. Next we construct a basis {1, i′, j′, i′j′}
with (i′)2 = a′, (j′)2 = b′ but where the last condition might fail. As a
last step we can tweek this last basis in order for ij = −ji to hold.

Remark. It is known that in case k = R every CSA of dimension 4 is isomorphic
to either M2(R) (with a = −1, b = 1) or H, the Hamilton quaternions (with
a = b = −1). By Theorem 1.8 the latter must have a splitting field of dimension
2 over R and indeed H⊗R C ∼= M2(C).
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2 Azumaya algebras over local rings

We now generalize CSAs over a field to Azumaya algebras over local rings.
There are several equivalent ways to define Azumaya algebras. Following the
book [Mil80] we start with the following rather technical definition:

Definition 2.1. Let R be a commutative local ring (this will be the case
throughout this section) and let A be an associative R-algebra such that R→ A
identifies R with a subring of Z(A) (i.e. the structure morphism is injective).
Then A is called an Azumaya algebra over R is A is free of finite rank l as an
R-module and if the following map is an isomorphism:

φA : A⊗R Aop → EndR(A) : a⊗ a′ 7→ (x 7→ axa′)

where Aop is the opposite algebra to A (i.e. the same additive structure and the
multiplicative structure given by by a • b := b · a).

Remark. • As we require A to be free over R, the inclusion R ⊂ Z(A) is
automatic.

• φA always is an R-algebra morphism, so only the bijectivity in the defini-
tion is a nontrivial condition.

In the case where R = k is a field we have the following:

Proposition 2.2. If A is a CSA over a field k, then A is Azumaya over k.

Proof. Let dimk(A) = l then φA is a morphism between k-algebras which both
have dimension l2 over k. Hence it suffices to check injectivity. Note that
A⊗kAop is a CSA over k hence ker(φA) = 0 or A⊗kAop. As the second option
is obviously false we have proven injectivity of φA.

The other direction is also true and follows from the following proposition

Proposition 2.3. Let A be an Azumaya algebra over R, then Z(A) = R and
there is a bijection between the (two-sided) ideals of A and the ideals of R:

{ Ideals of A} 1−1←→ { Ideals of R}
I 7→ I ∩R
JA ← [ J

Proof. Let ψ ∈ EndR(A) and c ∈ Z(A) then for all a ∈ A we have cψ(a) =
ψ(ca) = ψ(ac) = ψ(a)c because ψ is given by multiplication by elements in A as
A is Azumaya. Similarly ψ(I) ⊂ I for each ideal I of A. Now let 1 = a1, . . . , al
be a basis for A as an R-module and define χi ∈ EndR(A) by χi(aj) = δij .
Write c =

∑
i riai with all ri ∈ R, then

c = 1 · c = χ1(a1)c = χ1(a1c) = χ1(1 · c) = χ1

(
l∑
i=1

riai

)
= r1 ∈ R
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Now we check the bijection between the sets of ideals. As the maps are well
defined, it suffices to prove I = (I ∩R)A and J = JA∪R. Both equalities are
trivial to check.

Corollary 2.4. An Azumaya algebra over a field is a CSA.

Proposition 2.5. Let (R,m), (R′,m′) be commutative local rings and let A be
a free R-module of rank l. Assume there is a morphism R→ R′ then:

i) If A is Azumaya over R then A⊗R R′ is Azumaya over R′.

ii) If A⊗R/m is Azumaya (hence CSA) over R/m then A is Azumaya over
R.

Proof. We have the following commutative diagram:

φA ⊗R′ : (A⊗R Aop)⊗R R′ EndR(A)⊗R R′

φA⊗R′ : (A⊗R R′)⊗R′ (A⊗R R′)op EndR′(A⊗R R′)

∼= ∼=

The first statement follows immediately from this diagram. For the second
statement note that surjectivity of φA ⊗R R/m implies surjectivity of φA by
Nakayama’s Lemma. For the injectivity we need a technical Lemma, e.g. [Mil80,
Lemma IV.1.11]

Corollary 2.6. Let A be a free module of rank l over (R,m) and let k = R/m,
then the following are equivalent:

• A is Azumaya over R

• A⊗ k is a CSA over k

• A⊗ k ∼= Mn(k)

In particular l = n2 for some n ∈ N

Corollary 2.7. • The tensor product of two Azumaya algebras is an Azu-
maya algebra.

• Mn(R) is Azumaya over R

We now state the main result of this section

Proposition 2.8 (Skolem-Noether). Let A be Azumaya over R, then every
ψ ∈ AutR(A) is inner. I.e. for any such ψ there is a unit u ∈ A∗ such that
ψ(a) = uau−1.
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Proof. Given ψ ∈ AutR(A), there are two different ways to turn A into an
A⊗R Aop-module: {

(a1 ⊗ a2)a = a1aa2
(a1 ⊗ a2)a = ψ(a1)aa2

Denote the resulting A ⊗R Aop-modules by A, respectively A′. Both A′ :=
A′ ⊗R R/m and A are simple A ⊗R A

op
-modules. This is based on the fact

that A ⊗R A
op

-submodules of A or A′ correspond to two-sided ideals of the
central simple algebra A (the argument for A′ uses the fact that ψ is not just
an endomorphism but an automorphism).
By Proposition 1.9: A⊗RA

op
is a CSA over R = R/m and thus it is of the form

Mn(D) for some division algebra D over R. All simple modules over Mn(D)
are of the form Dn, so there must be an isomorphism of A⊗R A

op
-modules:

χ : A→ A′

We now claim that this lifts to a surjective A⊗RAop-module morphism χ : A→
A′.

First suppose the claim holds, then setting u = ψ(1) gives:

ψ(a)u = (a⊗ 1)u = χ((a⊗ 1)1) = χ(a) = χ((1⊗ a)1) = (1⊗ a)χ(1) = ua

Surjectivity of χ gives the existence of an a0 ∈ A such that χ(a0) = 1, hence

1 = χ(a0) = χ((1⊗ a0)1) = ua0

implying that u is invertible in A.
Now we prove the claim: Note that we have the following diagram of A⊗R

Aop-module morphisms:

A

A

A′ A′

χ

so the existence of χ follows if we can prove that A is a projective A⊗R A′-
module. As A is free as an R-module there is an R-module morphism g : A→ R
such that g(r) = r. As A is Azumaya we have A⊗R Aop ∼= EndR(A) and A is
a direct summand of EndR(A) via

A EndR(A) A
a 7→ (a′ 7→ g(a′)a) f 7→ (f(1))

Finally surjectivity of χ follows from Nakayama’s Lemma.
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3 Azumaya algebras over schemes

Throughout this section, let X be a locally Noetherian scheme

Proposition 3.1. Let A be an OX-algebra of finite type as an OX-module.
Then the following are equivalent:

i) A is a locally free OX module and φA : A ⊗ Aop → EndOX
(A) is an

isomorphism

ii) Ax is Azumaya over OX,x for each point x in X

iii) Ax is Azumaya over OX,x for each closed point x in X

iv) A is a locally free OX module and Ax ⊗ OX,x/mx is a CSA over k(x) =
OX,x/mx

v) There is a covering (Ui → X) for the étale topology such that for each
i : A⊗OX

OUi
∼= Mri(OUi

) for some ri

vi) There is a covering (Ui → X) for the fppf (flat and of finite presentation)
topology such that for each i : A⊗⊗OX

OUi
∼= Mri(OUi) for some ri

Remark. Note that in the above proposition we made some abuse of notation:

if (Ui
fi→ X) is a covering in the étale or flat topology, then A⊗OX

OUi
is short

hand notation for f∗i A

Proof. We prove i)⇔ ii)⇔ iii) and ii)⇒ v)⇒ vi)⇒ iv)⇒ ii).

i)⇔ ii) As A is locally free we have (A ⊗OX
Aop)x = Ax ⊗OX ,x (Ax)op and

EndOX
(A)x = EndOX ,x(Ax). And φA is an isomorphism if and only

if all (φA)x = φAx are isomorphisms.

ii)⇒ iii) obvious

iii)⇒ ii) If η is some non-closed point, then there is a closed point x ∈ η (on a
locally Noetherian scheme we have existence of closed points: [Sta15, Tag
01OU, Lemma 27.5.9.]). Then there is a (non-local) morphism of local
rings OX,x → OX,η. The result then follows from Proposition 2.5.

ii)⇒ v) Let x be a point in X, let k(x) = OX,x/mx with separable closure k̃(x) and

let x : Spec(k̃(x)) → X be the associated geometric point. Recall from
the previous lecture that the étale stalk OX,x is a module over the Zariski
stalk OX,x, because it is it’s strict Henselization. In particular we can
apply Proposition 2.5 to obtain that Ax⊗OX,x is Azumaya over the strict

Henselian (local) ring OX,x. The residue field of OX,x is given by k̃(x) and

hence is separably closed. By Theorem 1.8, this implies that Ax ⊗ k̃(x)
is split. [Mil80, Proposition IV.1.6] then implies that Ax ⊗ OX,x is itself
split, i.e. Ax ⊗ OX,x ∼= Mr(OX,x). From this it follows that there is an

étale morphism U
f→ X whose image contains x such that f∗A ∼= Mr(U).
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(Details: as Ax ⊗ OX,x ∼= Mr(OX,x) there is some basis (eij)i,j=1,...,r

(suggestive notation!) for Ax ⊗ OX,x as an OX,x module such that the
multiplicative relations are given by eijejl = eil. As A is locally free (in
the Zariski and hence also étale topology) we have Ax ⊗OX,x ∼= Ax and
there must exist some étale environment V of x such that there is a basis
(cij)i,j=1,...,r for A(V ) for which (cij)x = eij . (The fact that the cij give
a basis for A(V ) is heavily based on the locally freeness of A.)
For each i, j, l the relation

(cij)x · (cjl)x = (cil)x

implies that there is some étale environment Vijl → V → X of x for which

cij |Vijl
cjl|Vijl

= cil|Vijl

we can then set U = V000 ×V V001 ×V . . .×V Vrrr.

v)⇒ vi) Trivial as each étale morphism is flat and of finite presentation.

vi)⇒ iv) Let (Ui
fi→ X) be a covering for the flat topology such that for each

i : A ⊗OX
OUi

∼= Mri(OUi). We first check that A is locally free. Let
U = qUi, then qfi : U → X is surjective and flat (hence by definition
faithfully flat). In particular the fact that f∗A is a flat OU -module (this
is true because it is finitely generated and locally free) implies that A is a
flat and hence locally free OX -module.

(Details: suppose we are given a short exact sequence of OX -modules:

0→ F → G → H → 0

As f is flat the following is exact as well:

0→ f∗F → f∗G → f∗H → 0

Now −⊗OU
f∗A is an exact functor pullback commutes with tensor prod-

uct, so we get the exact sequence

0→ f∗(F ⊗OX
A)→ f∗(G ⊗OX

A)→ f∗(H⊗OX
A)→ 0

and as f is faithfully flat this implies that

0→ F ⊗OX
A → G ⊗OX

A → H⊗OX
A → 0

is itself exact and hence A is a flat OX -module.)

Next let x ∈ X be chosen at random. We check that Ax ⊗OX,x
k(x)

is a CSA over k(x). Take i such that x is in the image of fi, say fi(y) = x
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for some y ∈ Ui. Then (f∗i A)y = Ax ⊗OX,x
OUi,y and thus(

Ax ⊗OX,x
k(x)

)
⊗k(x) k(y) ∼= Ax ⊗OX,x

(
k(x)⊗k(x) k(y)

)
∼= Ax ⊗OX,x

(
OUi,y ⊗OUi,y

k(y)
)

∼=
(
Ax ⊗OX,x

OUi,y

)
⊗OUi,y

k(y)
∼= (f∗i A)y ⊗OUi,y

k(y)
∼= Mri(k(y))

This implies that some base change of Ax ⊗ k(x) is a CSA and hence
Ax ⊗ k(x) is itself a CSA.

iv)⇒ ii) This was already proved in Proposition 2.5.

We end this seminar by the following version of the Skolem-Noether theorem:

Proposition 3.2. Let A be Azumaya on X, then every ψ ∈ Aut(A) is locally,
for the Zariski topology on X an inner automorphism. I.e. there is a Zariski-
open covering (Ui → X) such that ψ|Ui

is of the form a 7→ uau−1 for some
u ∈ Γ(Ui,A)∗

Proof. Let x ∈ X, then by the Skolem-Noether Theorem for local rings (Propo-
sition 2.8) there is a ux ∈ A∗x such that ψx(ax) = u−1x axux for all ax ∈ Ax.
As ux is invertible in Ax, there is some open environment U of x such that ux
is given by the fibre of some invertible u ∈ Γ(U,A)∗. (by definition ux being
invertible asks for uxvx = vxux = 1x. Again by definition this implies that
there are section u, v on some environment U of x such that uv = vu = 1U and
(u)x = ux, (v)x = vx.) As A is locally free, we may assume A is free on U
(shrinking U if necessary). I.e. there exist a1, . . . , an2 ∈ Γ(U,A) which give a
basis for A|U as a free OU -module. We now have two morphisms of OU -modules

ψ|U :AU → AU
ϕ :AU → AU : a 7→ u−1au

whose stalks agree at x. I.e. (ψ|U (ai))x = (ϕ(ai))x for all i = 1, . . . , n2. By
again shrinking U if necessary we can assume ψ|U (ai) = ϕ(ai) for all i and
hence ψ|U is inner.
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