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1 Introduction

We’ll introduce stacks, which are a generalization of the notion of sheaves. They
are useful, informally speaking, whenever objects are considered upto isomor-
phism. More precisely, stacks keep track of how objects and morphisms between
them glue, while sheaves only care about the objects.

A sheaf F associates to each U in the site a set F(U), maybe with abelian
group structure or whatever. So naively we could just take F(U) to be a cate-
gory, and F(U)→ F(V ) a restriction functor for every map V → U of the site.
But how to translate for example the notion of isomorphism of sheaves? We
have the problem that isomorphism of categories is here a useless concept.

Example 1. Let A and A′ be two isomorphic rings (e.g. C and R[x]/x2 + 1).
Then there is no obvious isomorphism from the category of A-modules to the
category of A′-modules. If we consider for example the functors

Mod(A) Mod(A′)

A′⊗A−

A⊗A′−

then these are not mutually inverse, because for instance A′ ⊗A A is only iso-
morphic to A′ and not really equal. In fact, it would be difficult to define what
we mean by isomorphism, because the objects of a category almost never form
a set.

The alternative is to look at equivalence of categories. Recall that two cat-
egories C and D are called equivalent if there exist functors F : C → D and
G : D → C with FG ' 1D and GF ' 1C . This automatically brings us into
the realm of 2-categories. So we will start our exposition on stacks by recalling
some technicalities from category theory.

2 Some category theory

Definition 2. A monoidal category is a category C equipped with a functor
⊗ : C × C → C and an object I in C, equipped with natural isomorphisms

(A⊗B)⊗ C ' A⊗ (B ⊗ C) for all A,B,C in C
A⊗ I ' A ' I ⊗A for all A in C
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satisfying some coherency conditions. The functor ⊗ is called the tensor product
and I is called the unit.

Example 3.
• The category of bimodules over a ring A, with tensor product ⊗A and

unit A.
• The category of left modules (or right modules, or symmetric bimodules)

over a commutative ring A, with tensor product ⊗A and unit A.
• The category of sets with tensor product × and unit some set with one

element.
• The category of categories with tensor product × and unit some category

with one object and only the identity morphism.

Definition 4. Let (A,⊗, I) be a monoidal category. A category enriched in A
is a collection C equipped with a so-called Hom object

Hom(M,N) in A

for all M , N in C. These Hom objects have to be accompanied by a composition
rule

Hom(M,N)⊗Hom(N,P )→ Hom(M,P )

for all M , N and P in C, and an identity morphism

I → Hom(M,M)

for every M in C. The composition is required to be associative and composition
with the identity morphism has to act trivially on the Hom objects (on both
sides). Formally, the latter conditions give diagrams involving the associativity
and unit isomorphisms of A (however in practice these are often considered only
implicitly).

Example 5.
• Like any abelian category, the category of modules over a ring A is enriched

over the category of abelian groups.
• Locally small categories are just categories enriched in sets.
• The category of (small) categories is enriched in categories.

More generally, we have the following definition.

Definition 6. A 2-category is a category enriched in categories.

So instead of a set of morphisms, we have a category of morphisms, in partic-
ular we have “morphisms between morphisms”, which we will call 2-morphisms.
Unraveling above definition, we see that there are two kinds of compositions of
2-morphisms: a vertical composition of

M N
α

β

denoted by β ◦ α and a horizontal composition of

M N Pα γ
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denoted by γα. From the functoriality of the composition, we get for 2-morphisms

M N P
α γ

β δ

that (δ ◦ γ)(β ◦ α) = δβ ◦ γα.

Example 7.
• The category of (small) categories is a 2-category, with natural transfor-

mations as 2-morphisms.
• A groupoid is a small category in which every morphism is an isomor-

phism. So the category of groupoids inherits a 2-category structure from
the category of small categories.

3 Categories fibered in groupoids

This part is strongly based on the sections [Stacks, Tag 02XJ,Tag 003S,Tag
02XU].

Consider categories X and C together with a functor p : X → C. You should
think of X as a category lying over C; p is then the functor that associates to
each object of X its “base” in C.

Definition 8. A morphism φ : y → x in X is said to be strongly cartesian if it
satisfies the following universal property. For every f : z → x and g : p(z) →
p(y) such that p(φ)g = p(f) there is a unique h : z → y with φh = f and
p(h) = g.

Lemma 9.
• The composition of strongly cartesian morphisms is again strongly carte-

sian.
• Isomorphisms are strongly cartesian.
• If f : y → x is strongly cartesian, then it is an isomorphism if and only if
p(f) is an isomorphism.

Notice that the definition is very similar to the definition of a pullback. This
“pulling back” of elements in X is going to replace the restriction morphism
that we had for sheaves. So if we want to imitate presheaves, we should ask
that every element can be pulled back.

Definition 10. Let p : X → C be a functor. We say that X is fibered over C if
for every x in X and g : s → p(x) in C, there is a strongly cartesian morphism
f : y → x with p(y) = s and p(f) = g. In this case, the fiber over an object s
of C is the subcategory consisting of the objects x of X with p(x) = s and the
morphisms lifting ids. A fibered category p : X → C is called fibered in groupoids
if all fibers are groupoids (i.e. all morphisms in the fiber are isomorphisms).

If we look specifically at categories fibered in groupoids, then the situation
simplifies as follows.

Proposition 11. Let X be a category fibered in groupoids over C. Then every
morphism in X is strongly cartesian.
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Proof. Take a morphism z → x in X . There is a strongly cartesian morphism
y → x with p(y) = p(z). By definition of strongly cartesian, the identity map
p(z) → p(y) and the morphism z → x together give a morphism z → y, which
is an isomorphism because z and y live in the same fiber.

Definition 12. Let X and X ′ be categories fibered in groupoids over C, with
structure morphisms p resp. p′. A morphism X → X ′ is a functor F : X → X ′
satisfying p′F = p. Let F and G be two morphisms from X to X ′. Then a 2-
morphism α : F ⇒ G is a natural transformation such that the induced natural
transformation from p′F = p to p′G = p is the identity.

After writing down the 2-morphisms explicitly, it becomes obvious that they
are all invertible. It is also easy to prove that the above definition really gives
a 2-category, because it is closely related to the 2-category of categories.

Let F : X → X ′ be a morphism of categories fibered in groupoids over C.
Then F is an equivalence if there is a morphism G : X ′ → X such that FG and
GF are both the identity upto 2-isomorphism. Note that this definition works
for any 2-category. Moreover, this notion is a priori different from saying that
F is just an equivalence of categories from X to X ′. We can however prove that
these notions agree in our case.

There is a functor
PSh(C) CFG(C)

from presheaves over C to categories fibered in groupoids over C, associating to
each presheaf F the following category:
• The objects are couples (U, x) with U in C and x ∈ F(U).
• The morphisms (V, y)→ (U, x) are maps f : V → U such that x restricts

to y along f .
It is easy to see that this is indeed a category fibered in groupoids, and (as
advertised) it is also functorial: a morphism of presheaves φ : F → G induces a
1-morphism between the corresponding categories by sending (U, x) to (U, φ(x))
and f : V → U to itself. The latter yields a map (V, φ(y))→ (U, φ(x)) because
φ(x) restricts again to φ(y).

Note that the above functor is fully faithful, so from now on we will mean with
“presheaf” a category fibered in groupoids that is in the image of this functor.
Take further X any category fibered in groupoids over C, such that objects in the
fibers of X only have trivial automorphisms (on the Stacks project, such X is said
to be fibered in setoids). Then it can be proved that X is equivalent to a unique
presheaf. Moreover, if X and Y are both equivalent to presheaves, then maps
between them are (upto 2-iso) just given by maps between the corresponding
presheaves.

Definition 13. A category fibered in groupoids is called representable if it is
equivalent to a representable presheaf.

For an object U of C, we will denote the corresponding representable presheaf
by hU .

Theorem 14 (2-Yoneda Lemma). Let X be a category fibered in groupoids over
C, and U and object of C. There is an equivalence of categories

Hom(hU ,X )→ XU
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where XU denotes the fiber of X over U .

Proof. See [Stacks, Tag 004B].

Let X be a category fibered in groupoids over C. Using the axiom of choice, we
can choose for every V → U in C and x in X some preferred strongly cartesian
morphism f∗x→ x. This f∗ automatically becomes a functor.

Definition 15. A category fibered in groupoids, is called split if we can choose
preferred strongly cartesian morphisms such that

g∗f∗ = (fg)∗

for all morphisms f and g in C.

Proposition 16. Every category fibered in groupoids is equivalent to a split
one.

Proof. See [Stacks, Tag 004A].

4 Stacks

Presheaves are called sheaves whenever local sections that agree on intersections,
can be glued to a unique global section. Stacks are a generalization of sheaves,
for which the “sections” do not need to be equal on intersections, but only
isomorphic. However, these isomorphisms should be compatible, a criterion
that is expressed by cocycles.

This part is based on the sections [Stacks, Tag 0268, Tag 02ZH ]. We fix a
category fibered in groupoids X over a site C. We can and will assume that X
is split.

For a covering W → U we look at the maps

W ×U W ×U W W ×U W W U,

pr12
pr02
pr01

pr1
pr0

pr

and we use the (nonstandard) notation

prr0 := pr0 pr02 = pr0 pr01

prr1 := pr0 pr12 = pr1 pr01

prr2 := pr1 pr12 = pr1 pr02 .

Let U be an object of the site, and consider the trivial covering U → U . Let
x be an element in XU . Then we get a canonical isomorphism

φ : pr∗1 x→ pr∗0 x

inducing a commutative diagram

prr∗1 x

prr∗2 x .

prr∗0 x

pr∗01 φ

pr∗12 φ

pr∗02 φ

(1)
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Now consider another covering f : V → U (to avoid confusion arising from
index sets, we assume that we can replace any covering by a singleton covering,
take for example U quasi-compact). We can pull back φ along f to get an
isomorphism

f∗φ : pr∗1 x→ pr∗0 x

for the covering f , for which we also get a commutative diagram as in (1). This
isomorphism will be called the canonical descent datum for the covering. More
generally, we will call a morphism

pr∗1 x→ pr∗0 x

a descent datum if the induced diagram as in (1) is commutative. A descent
datum is called effective if it is the pullback of a canonical descent datum along
an isomorphism.

Definition 17. The category fibered in groupoids X is called a stack over the
site C if
• for each U in C and x, y in XU , Hom(x, y) is a sheaf on U , and
• all descent data (for all coverings) are effective.

Note that a presheaf is a stack if and only if it is a sheaf. In particular,
representable presheaves can be seen as stacks, when working in a subcanonical
topology.

5 The inertia sheaf on a stack

Using the 2-Yoneda Lemma, we can interpret each stack X as a comma category
C/X . On this comma category we have a Grothendieck topology, inherited from
the topology on C. If C is the big site of a scheme for a certain topology, then
C/X becomes in this way the corresponding big site for X . Now sheaves on X
are just sheaves on this site. For further remarks, see [Stacks, Tag 06TN].

Definition 18. Let X be a fibered category. The inertia category IX is the
category with
• as objects the pairs (x, α) with x in X and α : x → x an automorphism

lifting the identity of p(x), and
• as morphisms (x, α)→ (y, β) the commutative diagrams

x y

x y

φ

α β

φ

.

Note that we have a morphism IX → X , by sending (x, α) to x and φ to
itself (using the above notations). Using the definition of strongly cartesian
morphisms, one can calculate that this turns IX into a category fibered in
groupoids over X .

It will even arise from a presheaf on X . Indeed, if we look at some x in
X and the corresponding fiber in IX , then the objects in this fiber are the
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automorphisms of x, and the morphisms between automorphisms α and β are
given by commutative diagrams

x x

x x

φ

α β

φ

,

with the extra condition that φ should go to the identity morphism in X . But
this means that φ is itself an identity morphism. This implies that IX actually
arises from a presheaf on X .

Now if C is equipped with a Grothendieck topology and X is a stack, then
we want to show that IX is actually a sheaf over X . If you write this down
explicitly, then this follows by the definition of a stack (the condition that the
hom-sets should give a sheaf).

6 Gerbes

Definition 19. Let X be a stack on a site C. Then X is called a gerbe if
• for every U in C there is a covering U ′ → U for which XU ′ is non-empty,

and
• for every U and every x, y in XU there is a covering U ′ → U such that x

and y become isomorphic over U ′.
Further, let A be a sheaf of abelian groups on C. Then an A-gerbe is a gerbe
equipped with an isomorphism of sheaves AX → IX .

The above definition is the one from [Lie04], and is only valid for sheaves of
abelian groups.

Note that for every sheaf F on X we have an action

F × IX → F (2)

given by pulling back sections of F along the elements of IX . If X is an A-gerbe,
then this gives an action

F ×AX → F. (3)
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