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The main goal of these notes is to give a description of the cohomology
of a Grassmannian (as an abelian group), and generalise this to complete flag
varieties. We mainly follow [Kre07], other useful references are given at the end.

1 Cell decompositions

Definition 1.1. A stratification of a schemeX is a decompositionX =
⊔n
j=1 Cj ,

where each Cj is locally closed and Cj \Cj is a disjoint union of some other Ci’s.
These Cj are called strata and their closures Cj are called the closed strata.

Example 1.2. Let G be a connected algebraic group over C, acting on a variety
V over C. Then the orbits form a stratification of V .

Definition 1.3. A stratification is called affine if each stratum is isomorphic
to some Ak. Affine stratifications are also called cell decompositions.

Example 1.4. • P0 ⊂ P1 ⊂ · · · ⊂ Pn gives a cell decomposition of Pn

• More generally, Grassmannians and flag varieties have cell decompositions
(see later)

Theorem 1.5 (Example 19.1.11 in [Ful84]). Let X be a scheme that admits
a cell decomposition. Then γX : A∗(X) → Hbm

∗ (X) is an isomorphism (where
Hbm
∗ denotes Borel–Moore homology).

Remark 1.6. If X is a compact variety over C, then Hbm
∗ (X) ∼= H2∗(X), so

in this case Ak(X) ∼= H2k(X) is the free abelian group on the k-dimensional
cells (i.e. real dimension 2k). This is because usual homology can be computed
using the cellullar complex, and in this case the differentials all vanish. It turns
out that the ring structures of A∗ and H2∗ agree too.

Sketch of proof of theorem. For Borel-Moore homology we have a long exact
sequence · · · → Hbm

k (Y )→ Hbm
k (X)→ Hbm

k (U)→ . . . , where Y ⊂ X is a closed
subscheme and U = X \Y . We also saw in the second week of the seminar that
we have an exact sequence Ak(Y )→ Ak(X)→ Ak(U)→ 0. By naturality of γ
and diagram chasing, we can conclude that if γY and γU are isomorphisms, then
γX is too. By using induction, we can then show that γX is an isomorphism
if X admits a cell decomposition (verify that γAk is an isomorphism for each
k).
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2 Schubert cells

2.1 Definitions

We view the Grassmannian G(k, n) as the quotient Matrank=kk×n /GL(k) with
action multiplication on the left (= row operations).

Definition 2.1. We define a Schubert symbol to be a sequence 1 ≤ j1 < j2 <
· · · < jk ≤ n.

To each Schubert symbol J corresponds a square matrix consisting of the
rows given by J , and its determinant is the Plücker coordinate corresponding
to J . Recall that the Plücker coordinates together constitute a map

G(k, n)→ P(n
k)−1,

called the Plücker embedding. This map is well-defined. Indeed, if g ∈ GL(k)
and M ∈ Matrank=k

k×n , then the Plücker coordinates of gM are p′i = det(g)pi,
where the pi are the Plücker coordinates of M . This shows that gM and M are

send to the same point in P(n
k)−1.

Lemma 2.2 (Gauss elimination). Each M ∈ G(k, n) has a unique representa-
tive matrix in row echelon form, i.e. we have a Shubert symbol J such that the
corresponding square matrix is

0 0 . . . 1
0 0 . . . 0
. . . . . . . . . . . .
0 1 . . . 0
1 0 . . . 0


and such that to the right of the 1’s coming from this submatrix are only zeroes.

Example 2.3. The matrices∗ 0 ∗ 0 1 0
∗ 0 ∗ 1 0 0
∗ 1 0 0 0 0

 ,

where each ∗ is an arbitrary complex number, are all in row echelon form cor-
responding to the same Schubert symbol (2, 4, 5).

Definition 2.4. The Schubert cell corresponding to J is defined as the variety
X0
J = {M ∈ G(k, n)| row echelon form of M has Schubert symbol J}.

It is clear that the X0
J are locally closed subvarieties isomorphic to Cd with

d = i1 + · · ·+ ik −
k(k + 1)

2
,

and that G(k, n) =
⊔
J X

0
J .

Definition 2.5. The Schubert variety corresponding to J is XJ = X0
J .
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The Schubert variety XJ is always defined by the vanishing of determinants
of some minors (this follows from the Gauss elimination algorithm). This corre-
sponds to vanishing of some Plücker coordinates, namely the ones corresponding
to Schubert cells I with I 6≤ J , where we use the following ordering on the Schu-
bert symbols:

Definition 2.6. For two Schubert symbols I : i1 < · · · < ik and J : j1 < · · · <
jk we define a partial ordering with I ≤ J if and only if it ≤ jt for all t.

Proposition 2.7.

X0
J = {Σ ⊂ Cn k-dimensional |dim(Σ ∩ Ci) = #{1, . . . , i} ∩ J}

XJ = {Σ ⊂ Cn k-dimensional |dim(Σ ∩ Ci) ≥ #{1, . . . , i} ∩ J}
Proof. For the first statement, look at the row echelon form of Σ. Then Σ ∈
X0
J ⇔ dim(Σ ∩ Ci) = #1, . . . , i ∩ J . For the second one, use the description by

Plücker coordinates (or geometric intuition).

Corollary 2.8. XJ =
⊔
I≤J X

0
I , in particular the Schubert cells form an affine

stratification.

Example 2.9. Consider the Schubert varieties in G(2, 4):

X∅=

(
∗ ∗ 0 1
∗ ∗ 1 0

)
all Σ ⊂ C4 all lines in P3

X1=

(
∗ 0 ∗ 1
∗ 1 0 0

)
Σ ∩ C2 is a line lines incident to given line

X11=

(
∗ 0 1 0
∗ 1 0 0

)
Σ ⊂ C3 lines in a plane

X2=

(
0 ∗ ∗ 1
1 0 0 0

)
C1 ⊂ Σ lines through a point

X21=

(
0 ∗ 1 0
1 0 0 0

)
C1 ⊂ Σ ⊂ C3 lines in a plane through a point

X22=

(
0 1 0 0
1 0 0 0

)
Σ = C2 line coinciding with given line

Note that the dimension of the Schubert variety/cell is the number of ∗’s.
Also, there’s an abuse of notation in the first column: the Schubert variety is
the closure of the mentioned set of matrices, not equal. But this shouldn’t be
too ambiguous because there’s a 1:1-correspondence.

Here we use the notation σλ where λ ranges over the Young diagrams fitting
into a k × (n− k) rectangle. For example the Young diagram corresponding to
λ = (2, 2, 1) is

and the smallest rectangle it could fit in is a 3× 2 one.
For a given Young diagram λ = (λ1, . . . , λn), the corresponding Schubert

symbol is given by ji = n− k+ 1− λi, so the corresponding schubert variety is
of codimension j, where j is the size of the Young diagrams. It is easy to see
that this gives a bijection between Young diagrams and Schubert symbols. So
the ordering on Schubert symbols induces an ordering on Young diagrams, and
it is easy to see that this coincides with the following ordering:
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Definition 2.10. For two Young diagrams λ and µ, we define a partial ordering
with λ ≤ µ if and only if the diagram λ fits into the diagram µ.

Corollary 2.11. We get Aj(G(k, n)) = H2j(G(k, n)) = Zmj , where mj is the
number of Young diagrams of size j, fitting into a rectangle with dimensions
k × (n− k). The other cohomology groups vanish.

Example 2.12. From example 2.9, we see that the even Betti numbers for
G(2, 4) are 1, 1, 2, 1, 1.

3 Flag varieties

Definition 3.1. A flag in Cn of type (d1, . . . , dk) is a chain ∅ = Σ0 ⊂ Σ1 ⊂
Σ2 ⊂ . . .Σk = Cn, where dim(Σi/Σi−1) = di. A flag of type (1, 1, . . . , 1) is
called a complete flag. Note that the sum of the di’s is always equal to n.

Definition 3.2. We define the n-th (complete) flag variety as Fn = GL(n)/B,
where B ≤ GL(n) is the subgroup consisting of upper triangular (invertible)
matrices.

It is easy to see that the points of F(n) are exactly the complete flags in Cn.
We also have a variety parametrising partial flags:

Definition 3.3. The partial flag variety of type (d1, . . . , dk) is defined as

F(d1, . . . , dk) = GL(n)/P,

where P ≤ GL(n) is the lower parabolic subgroup corresponding to
(d1, . . . , dk), i.e. the block upper triangular (invertible) matrices with blocks of
sizes d1, . . . , dk on the diagonal.

We already looked at the case G(k, n) = F(k, n − k). Also note that we
indeed have Fn = F(1, . . . , 1).

Lemma 3.4. Any M ∈ Fn has a unique representant N of the following type:
there is a permutation s ∈ Sn such that on row i, there is a 1 in the s(i)-th
column and such that there are zeroes directly on the right and directly below
this 1.

Example 3.5. The representants corresponding to the permutation 3, 2, 5, 1, 4
are of the form: 

∗ ∗ 1 0 0
∗ 1 0 0 0
∗ 0 0 ∗ 1
1 0 0 0 0
0 0 0 1 0


We can proof lemma 3.4 analogously to lemma 2.2 using linear algebra.

Using this lemma, we can apply the same principles as with the Grassmannians:
we define Schubert cells and Schubert varieties (indexed by the n-th symmetric
group) and show that the Schubert cells give a cell decomposition of the complete
flag variety. So the cohomology is again free as an abelian group and we have a
combinatorial description of the Betti numbers.

We can use the same methods for the study of partial flag varieties.
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