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Abstract

In this note we introduce Chern classes based on Grothendieck’s 1958
paper [4]. His approach is completely formal and he deduces all important
properties of Chern classes from a small number of axioms imposed on some
given data. These axioms are in particular fulfilled if one inputs the category of
smooth quasi-projective varieties with their intersection theory, thus obtaining
the familiar theory of Chern classes from this more general setup.
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Conventions We work in the setting of Grothendieck’s article, i.e. X will always
denote an algebraic variety: an integral, separated scheme of finite type over an
algebraically closed field k. If one is so inclined, there is always Fulton’s book [1]
which treats a more general case.

Disclaimer A big part of this note is shamelessly copied from either Gathmann [3]
or Grothendieck [4]. This has not been proofread thoroughly, so if you find any
mistakes, please tell me.
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1 Projective bundles

Grothendieck’s approach is based on taking iterated projective bundles, so in this
section we give their definitions and some basic properties. We start out by reviewing
some of the theory of vector bundles.

1.1 Vector bundles and locally free sheaves

Definition 1. Let X be a scheme. A sheaf F of OX -modules is called locally free of
rank r if there is an open cover {Ui} of X such that F|Ui

∼= O ⊕r
X for all i.

Definition 2. A vector bundle of rank r over a field k is a k-scheme F and a k-
morphism π : F → X , together with an open covering {Ui} of X and isomorphisms

(1) ψi : π−1(Ui)→ Ui ×Ar
k,

such that the automorphism ψi ◦ψ−1
j of (Ui ∩ U j)×Ar is linear in the coordinates

of Ar .

Proposition 3. There is a one-to-one correspondence between vector bundles of
rank r on X and locally free sheaves of rank r on X .

Proof. To a vector bundle F one associates the sheaf F defined by

(2) F (U) = {k−morphisms s : U → Fsuch that π ◦ s = idU},

which is called the sheaf of sections. Conversely, let F be a locally free sheaf. Take
an open cover {Ui} of X such that there are isomorphisms ψi :F|Ui

→ O ⊕r
Ui

. Now
glue the schemes Ui ×Ar

k together along the isomorphism

(3) (Ui ∩ U j)×Ar
k → (Ui ∩ U j)×Ar

k : (p, x) 7→ (p, (ψi ◦ψ−1
j )(x)).

Notice that linearity follows from the fact that ψi ◦ ψ−1
j is a morphism of OX -

modules.

The following lemmas are easy to prove and show that locally free sheaves on an
arbitrary scheme are ‘nice’, i.e. all linear algebra constructions go through. The
second lemma is used very, very often in the literature but is easily forgotten, at
least by the author.

Lemma 4. Locally free sheaves are closed under direct sums, tensor products,
symmetric products, exterior products, duals and pullbacks.

Lemma 5. Let 0→F →G →H → 0 be an exact sequence of locally free sheaves
of ranks f , g and h on a scheme X . Then ∧gG ∼= ∧ fF ⊗∧hH .

From now on we will use the terms ‘vector bundle’ and ‘locally free sheaf’ inter-
changeably.
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1.2 Projective bundles

Informally, for a given vector bundle F on X , the associated projective bundle P(F)
replaces each fibre Fx , x ∈ X with its projectivization P(Fx), so P(F)x = P(Fx). Let
us make this precise.

Definition 6. Let π : F → X be a vector bundle of rank r on a scheme X . The
projective bundle P(F) is defined by glueing Ui × Pr−1 to U j × Pr−1 along the
isomorphisms

(4) (Ui ∩ U j)× Pr−1→ (Ui ∩ U j)× Pr−1 : (p, x) 7→ (p,ψi, j x).

One says that P(F) is a projective bundle of rank r − 1 on X .

Notice that the corresponding projection morphism pr : P(F)→ X is proper (since
properness if ‘local on the base’), which is not the case for vector bundles.

We should remark that the general construction of (projective) bundles is as follows.
Starting from a locally free sheaf F , the associated vector bundle (repsectively
projective bundle) is defined to be

(5) Spec S(F ), respectively Proj S(F ),

i.e. one takes the relative spec (proj) of the symmetric algebra associated to F ,
see Hartshorne, Ex. II.5.18, II.7.10. It is important to note that if X is a variety,
then Proj S(F ) is as well. The property of being (quasi-)projective also passes
to projective bundles. This follows from a more general result on blowups, see
Hartshorne, Prop. II.7.16. This is not true for ordinary vector bundles Spec S(F )!

We now want to construct a canonical line bundle on P(F), called the tautological
subbundle. Let π : P(F)→ X denote the projection map, and consider the pullback
bundle π∗F on P(F). The corresponding open covering of P(F) is (Ui × Pr−1) and
the bundle is made up of patches (Ui × Pr−1) × Ar , which are glued along the
isomorphisms

(6) (Ui ∩U j)×Pr−1)×Ar → (Ui ∩U j)×Pr−1)×Ar : (p, x , y) 7→ (p,ψi, j x ,ψi, j y).

Definition 7. The tautological subbundle L∨F on P(F) is the rank 1 subbundle of π∗F
given locally by equations

(7) x i y j = x j yi ,

for i, j = 1, . . . , r.

Geometrically, the fiber of L∨F over a point (p, x) ∈ P(F) is the line in the fiber Fp
whose projectivization is x . The reason for taking duals will become clear later on.

1.3 The splitting principle

One would like to have a nice ‘composition’ series for any vector bundle F of rank r
over X . By this we mean a filtration by subbundles

(8) 0= F0 ⊂ F1 ⊂ . . .⊂ Fr−1 ⊂ Fr = F,
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such that Fi/Fi−1 is a line bundle on X . In general this is not possible, but it is
possible after pulling back the bundle to another variety. This theorem is often
referred to as the ‘splitting principle’.

Theorem 8. Let F be a rank r vector bundle on X , then there exists a variety Y and
a morphism f : Y → X such that f ∗F has a filtration by vector bundles

(9) 0= F0 ⊂ F1 ⊂ · · · ⊂ Fr−1 ⊂ Fr = f ∗F,

such that rk Fi = i. In fact, Y can be constructed as an iterated projective bundle.

Proof. We prove the statement by induction. For rk F = 1, it is trivial, so sup-
pose F has rank strictly greater than 1. Let Y ′ := P(F∨) with associated mor-
phism f ′ : Y ′ → X . Remember that L∨F∨ ⊂ ( f

′)∗F∨ denotes the tautological line
bundle. By dualizing we get a surjective morphism such that the kernel is a vector
bundle:

(10) 0→ F̃ → ( f ′)∗F → LF∨ → 0.

Now F̃ has rank one less than the rank of F so by induction there is a variety Y
and a morphism f ′′ : Y → Y ′ such that ( f ′′)∗ F̃ has a filtration with subquotient line
bundles. It now suffices to set f = f ′ ◦ f ′′ such that f ∗F has a filtration

(11) 0= F0 ⊂ F1 ⊂ . . .⊂ Fr−1 = ( f
′′)∗ F̃ ⊂ f ∗F

and we’re done. From the proof it is clear that Y can be constructed as iterated
projective bundle.

2 Input and axioms

In this section we introduce the formal data Grothendieck needs to obtain a nice
theory of Chern classes. Chern classes are invariants associated to a vector bundle E
over a variety X . The idea, which Grothendieck attributes to Chern, is to use the
multiplicative structure on the ring of classes of algebraic cycles on the projective
bundle associated to a vector bundle E on X to obtain an explicit construction of
the Chern classes associated to E. In the setting we are interested in, the Chern
classes live in the Chow ring CH•(X ) of X , but in fact, this is not the only possibility,
and Grothendieck’s framework is general enough to cover other interesting case, for
which we refer to the article.

2.1 Input

Let V denote some category of smooth algebraic varieties over k, where the mor-
phisms are morphisms of algebraic varieties.

This category has to satisfy:

V1 : If X ∈ V, and F is a vector bundle on X , then P(F) ∈ V.

Further, one needs the following as input:
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1. A contravariant functor A : V → GCR, where GCR denotes the category of
graded commutative unital rings, i.e. one has x y = (−1)deg x deg y y x;

2. A functorial homomorphism of abelian groups pX : Pic(X )→ A2(X ), for X ∈ V;

3. Let i : Y ,→ X ∈ V be a closed algebraic subvariety of constant codimension p
in X , such that Y is also in V. Then there is a group homomorphism

(12) i∗ : A(Y )→ A(X ),

increasing the degree by 2p.

We need some more notation: for a morphism f : X → Z in V, we will de-
note f ∗ := A( f ) : A(Z) → A(X ). The unit of A(X ) will be denoted 1X , and for i
and Y as in 3. above, we define

(13) pX (Y ) := i∗(1Y ).

Also, if F is a vector bundle on X , remember that L∨F denotes the tautological
subbundle of P(F). Then using 2. above, we define ξF as follows

(14) ξF := pP(F)(LF ) ∈ A2(P(F)).

Also notice that A(P(F)) can be considered as a left A(X )-module by applying the
functor A to the projection morphism pr : P(F)→ X . We will refer to the input items
as I .1, I .2, I .3.

Smooth projective varieties We briefly review this input for V be the category of
smooth projective varieties over k. Details can be found in [1, 2]. The condition V1
is satisfied by the remark in the section on projective bundles. The functor A= CH,
which sends a variety to its Chow ring with doubled degree, i.e. we put CH i in
degree 2i, since the Chow ring is commutative (for other natural occurring A this
is not the case. For a morphism of nonsingular varieties f : X → Y , one can define
a pullback by α 7→ γ∗f (α× [Y ]), where γ f denotes the graph of f . That this works
and is well defined can be found in [2]. The functorial morphism pX is just the map
sending a Cartier divisor to its associated Weil divisor: a Cartier divisor is represented
by the data {(Ui), fi}, and one sends this to the Weil divisor

∑

V ordV ∩Ui( f )[V ],
where V runs through the codimension 1 subvarieties of X . Notice that this is in fact
an isomorphism for all smooth n-dimensional schemes, which uses a deep theorem
from commutative algebra, the Auslander-Buchsbaum theorem, which says that
regular local rings are unique factorization domains. Finally, for the third datum the
induced pushforward map just sends the class of a subvariety [Z] of codimension l
in Y to [Z]. So in X it is of codimension p+ l, corresponding to a degree increase
of 2p.

2.2 Axioms

Given the input in the previous section, Grothendieck requires them to satisfy the
following four axioms.
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1. For X ∈ V, and F a vector bundle of rank r on X , the elements

(15) 1P(F),ξF ,ξ2
F , . . . ,ξr−1

F

form a basis of the A(X )-module A(P(F)).

2. For X ∈ V, L a line bundle on X , and s a regular section of L transversal to
the zero section, such that s−1(0) ∈ V, one has

(16) pX (s
−1(0)) = pX (L).

3. For Z
i
,−→ Y

j
,−→ X , all belonging to V, one has

(17) ( j ◦ i)∗ = j∗ ◦ i∗.

4. For Y
i
,−→ X , both belonging to V, one has

(18) i∗(bi∗(a)) = i∗(b)a,

for a ∈ A(X ), b ∈ A(Y ).

We will refer to these as A.1 through A.4.

Smooth projective varieties For smooth projective varieties, axiom 1 is quite
hard, and can be found for example as Theorem 3.3 (b)in [1]. Axiom 2 follows
immediately from the familiar correspondence between Cartier divisors and line
bundles. Axiom 3 is immediate from the definition of the pushforward we gave in
the Inputs section. Axiom 4 is known as the ‘projection’ formula and can also be
found in [1].

2.3 Some fundamental lemmas

The input and axioms can be split in two subsets, each with a specific purpose. The
map i∗ discussed in I .3, and the axioms pertaining to i∗, namely A.2, A.3 and A.4
have as main purpose the proof of the following technical lemma.

Lemma 9. Let X ∈ V, F a vector bundle of rank r on X , and s a regular section of F .
Further, let

(19) F = F0 ⊃ F1 ⊃ · · · ⊃ Fr−1 ⊃ Fr = 0

be a decreasing sequence of subbundles of F , such that rk(Fi) = r−i. For each i = 1, . . . , r,
define

(20) Yi = {x ∈ X | s(x) ∈ Fi},

and suppose that Yi is a non-singular subvariety of X , which is contained in V. Now
let si be the section of (Fi/Fi+1)|Yi

induced by s, and suppose that all the si are
transversal to the zero section. If one finally defines

(21) ξi = pX (Fi−1/Fi),

then one concludes that

(22) pX (Yr) =
∏

1≤i≤r

ξi .
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Proof. We will prove that

(23) pX (Yj) =
∏

1≤i≤ j

ξ j ,

by induction on j. For j = 1 this is just axiom 2. Denote by Yj+1
i
,−→ Yj

u j
,−→ X the

respective inclusion. Now one finds

(24)

pYj
(Yj+1) =

A.2 pYj
([F j/F j + 1]|Yj

)

= pYj
(u∗j[F j/F j+1])

=I .2 u∗j pX (F j/F j+1)

= u∗j (ξ j+1).

Now apply u j∗ to the equality and in the next equality A.3 on the LHS to get

(25)

u j∗i∗(1Yj+1
) = u j∗u

∗
jξ j+1

pX (Yj=1) = u j∗(1Yj
· u∗jξ j+1)

=A.4 u j∗(1Yj
) · ξ j+1

= pX (Yj)ξ j+1.

Now it suffices to use the induction hypothesis.

Perhaps more important still is the following corollary which immediately follows
by combining the lemma with A.2.

Corollary 10. Under the conditions of lemma 9, and assuming that s vanishes
nowhere, one has

(26)
∏

1≤i≤r

ξi = 0.

Then there is one more lemma, which is crucial for the uniqueness property of Chern
classes.

Lemma 11. Let X ∈ V, and F a vector bundle of rank r on X . Let f : Y → X be the
morphism obtained by the splitting principle. Then the induced morphism

(27) f ∗ : A(X )→ A(Y )

is injective.

Proof. By our construction of the Y as iterated projective bundle, we can assume to
be working with P(F), and here the statement follows immediately from V1 and
axiom 1, since it says ξ0

F = 1P(F) is free over A(X ). An inductive argument then
shows the claim.

3 Chern classes

To introduce Chern classes and describe their characterising properties, we will need
corollary 10, I .1, I .2 and A.1.

7



From axiom 1, we immediately find that there exist unique elements ci(F) ∈ A2i(X )
for every natural number i ≥ 0 such that

(28)
r
∑

i=0

ci(F)(ξF )
r−i = 0 c0(F) = 1 ci(F) = 0 for i > r.

Definition 12. The ci(F) defined above is called the i-th Chern class of F . The sum
of all Chern classes is denoted

(29) c(F) =
∑

i

ci(F),

and is called the total Chern class of F .

The following theorem completely describes the Chern classes in terms of their
properties, which are tailored to computability.

Theorem 13. The Chern classes defined above satisfy the following 3 properties:

1. Functoriality: let f : X → Y be a morphism in V, and F a vector bundle on Y ,
then

(30) c( f ∗F) = f ∗(c(E));

2. Normalization: let L be a line bundle on X ∈ V. Then

(31) c(L) = 1+ pX (L);

3. Additivity: for X ∈ V, and 0→ F ′→ F → F ′′→ 0 an exact sequence of vector
bundles on X , one has

(32) c(F) = c(F ′)c(F ′′).

Moreover, these 3 properties uniquely characterize Chern classes given the input
and axioms.

Let us first show the uniqueness statement, since this basically tells one how to
actually compute a Chern class from the input. Let f : Y → X be the map from
the splitting principle. Since Y is an iterated projective bundle, by V1 we know
that Y ∈ V. By lemma 11, we know the associated map f ∗ : A(X ) ,→ A(Y ) is
injective. So if we know f ∗(c(F)), then we know c(F). But now by functoriality,
one has f ∗(c(F)) = c( f ∗F). We know from the splitting principle that f ∗F has a
filtration by line bundles, so from additivity one obtains

(33) c(F) =
r
∏

i=1

c(Fi−1/Fi) =
r
∏

i=1

(1+ pX (Fi−1/Fi)),

where we used normalization in the last step.

Functoriality is not that hard, but we skip the proof. Let us first show normallity.
Since L is a line bundle, we have P(L)∼= X and L∨L , the tautological line bundle, is
just L. So now

(34) ξL = pP(L)(LL) = pX (L
∨) =−pX (L).
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Now writing out equation 28 for a line bundle we get ξL+c1(L) = 0, so c1(L) = pX (L)
and normality follows since c0(L) = 1.

It is only additivity that requires real work. Let us give a sketch of a proof. Using
functoriality and the splitting principle in a similar way as before, one can reduce to
the question whether additivity holds when F ′ and F ′′ have a complete filtration by
subbundles. Then obviously F also has such a filtration and it will suffice to show
that for every composition series of F ′, F ′′ and F thus obtained, the equation 33
holds. So in effect, it remains to show equation 33 for a vector bundle F that has a
complete filtration by subbundles. Consider the following diagram

(35)

f ∗F F

P(F) X
f

and let L∨F denote the tautological subbundle of P(F). Let (Fi)i be a complete
filtration by subbundles of F . Defining F ′ = LF ⊗ f ∗F , the filtration on F gives a
filtration on this bundle with factors F ′i−1/F

′
i = LF ⊗ ( f ∗Fi−1/ f ∗Fi), so in the Picard

group of P(F), we get the equality

(36) F ′i−1/F
′
i = LF + ( f

∗Fi−1/ f ∗Fi).

Applying the group morphism pP(F), we get

(37) pP(F)(F
′
i−1/F

′
i ) = ξF + ξ

′
i ,

where ξ′i = pP(F)( f ∗Fi−1/ f ∗Fi), just like in lemma 9. Now from the inclusion L∨F ,→ f ∗F ,
one obtains a non-vanishing section s of F ′ that turns out to be transversal to the zero
section (I’m skipping the transversality proof). This allows one to apply corollary 10
to obtain

(38)
∏

1≤i≤r

(ξF + ξ
′
i) = 0.

This says that the ci(F), defined by equation 28, are elementary symmetric functions
in the ξ′i , which is exactly what equation 33 says (remember that this equation
involves a pullback).

Using the theory of symmetric functions, one can deduce formula for the Chern
classes of tensor products, exterior products and duals.

4 Appendix 1: Example of a projective bundle

Let X = P1 and let F be the rank 2 vector bundle OX ⊕OX (−1) on X . Then P(F) is a
projective bundle of rank 1, so it is a scheme of dimension 2. Our claim is that P(F)
is isomorphic to the blow-up of P2 in a point p.

At least intuitively, it is clear that the blow-up should be a P1-bundle over P1, since
one can project onto the exceptional divisor. So we are looking for a rank 2 bundle F
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on the projective line. Since every vector bundle on P1 splits as a direct sum of line
bundles, we know F is of the form O (d ′)⊕O (d ′). Now tensoring a vector bundle
with a line bundle multiplies the transition functions by a scalar, so it does not
change the associated projective bundle, so we can assume that F = O ⊕ O (−n),
for some n ≥ 0. It is not too hard to see that this −n gives rise to a curve of
self-intersection −n so in fact n= 1.

Let us check this formally: P(F) is obtained by glueing two copies U1 and U2
of A1 × P1 along the isomorphism

(39) (A1\{0})× P1→ (A1\{0})× P1 : (q, (x1 : x2)) 7→ (1/q, (x1 : qx2)).

The changes in the affine coordinate q correspond to the glueing one uses to
obtain P1. The first projective coordinate gets sent to itself, because of OX and the
second one to qx2 because of OX (−1).

The blow-up of P2 in p = (1 : 0 : 0) on the other hand is given by

(40) Blp(P2) = {((x0 : x1 : x2), (y1 : y2)) | x1 y2 = x2 y1} ⊂ P2 × P1.

An explicit isomorphism between the two varieties is given by

(41)
U1
∼= A1 × P1→ Blp(P2) : (q, (x1, x2)) 7→ ((x1 : qx2 : x2), (q : 1)),

U2
∼= A1 × P1→ Blp(P2) : (q, (x1 : x2)) 7→ ((x1 : x2 : qx2), (1 : q)),

and note that these morphisms are compatible with the glueing isomorphism (39).

Now let us compute the Chow groups of P(F). The computation is based on the
following proposition.

Proposition 14. Let X be a scheme stratified by affine spaces, i.e. there is a filtration
by closed subschemes

(42) ;= X−1 ⊂ X0 ⊂ · · · ⊂ Xn = X ,

such that Xk\Xk−1 = Ak q · · · qAk, with Ak appearing ak times. Then Ak(X )∼= Zak .

The projective plane has a stratification A2 q A1 q A0, so identifying A0 with p,
the projective bundle P(F) has a stratification A2 qA1 qA1 qA0. Denoting by q
any point in P(F), by L the strict transform of a line in P2 through p and by E the
exceptional divisor, one finds

(43)

A0(X ) = Z[q]
A1(X ) = Z[L]⊕Z[E]
A2(X ) = Z[P(F)].

In fact, one can explicitly check that there is no relation in A1(X ). Suppose that n[L]+m[E] = 0.
Let π : P(F)→ P2 be the projection to the base of the blow-up. This is proper and

(44) 0= π∗(0) = π∗(n[L] +m[E]) = n[M] +m · 0 ∈ A1(P2),

where [M] is the class of a line in P2, so n = 0. Denote by f : P(F)→ P1 the P1-
bundle map. Then

(45) 0= f∗(0) = f∗(n[L] +m[E]) = n · 0+m[P1],

10



so m = 0. One can also show that for any line H in P(F) not intersecting E, one
has [H] = [L] + [E] ∈ A1(P(F)).

Now Pic(P(F)) = Z[H]⊕Z[E], so to compute the intersection products it will thus
suffice to compute H2, H · E and E2. First of all, clearly H2 = 1 and H · E = 0. Now

(46) E2 = E · (H − L) = E ·H − E · L = 0− 1=−1.

All in all, the Chow ring has the following presentation

(47) A•(P(F))∼= Z[x , y, z]/(x2 = z, x y = 0, y2 =−z),

where deg(x) = deg(y) = 1 and deg(z) = 2.

5 Appendix 2: Example of a Chern class computation

Consider X = P1 × P1. It is not hard to check that

(48) CH•(X )∼= Z[x , y]/(x2, y2)

and intuitively, this is clear since lines in the same ruling do not intersect and lines
in a different ruling intersect in one point, corresponding to the polynomial x y . We
consider the problem of determining the kernel of the morphism

(49) Hom(O (0,1),O (1,1))⊗O (0,1)→O (1,1)→ 0,

which should be a vector bundle F of rank 1. There is very easy way of doing this,
pointed out to me by Dennis Presotto, using the (told you I always forget) lemma 5,
but at least the following illustrates how a Chern class computation can be carried
out. We’ll do it step by step, to clearly illustrate what is going on.

By additivity, we know that

(50) c(F) · c(O (1,1)) = c(O (0, 1)⊕O (0,1)).

Now using additivity and then normality, the RHS becomes

(51) c(O (0, 1)⊕O (0,1)) = c(O (0,1)) · c(O (0, 1)) = (1+ y)(1+ y) = 1+ 2y.

For the LHS we find using normality and the group operation in Pic(X ) that

(52) c(O (1, 1)) = 1+ pX (O (1, 1)) = 1+ pX (O (1,0)) + pX (O (0,1)) = 1+ x + y.

Now it is easy to check that

(53) c(F) = 1− x + y,

and using the isomorphism between CH1(X ) and Pic(X ), we see that F = O (−1, 1).
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