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Abstract

These are the notes for my lecture on dimension functions in the ANAGRAMS
seminar. The goal is to introduce the notion of depth, and use this to study
singularities. So the main subject are actually Gorenstein and Cohen–Macaulay
rings.
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1 Definitions

All rings will be commutative (strictly speaking this is not necessary, but we will take
algebraic geometry as main motivation) and unital. Let us for the ease of statement
assume that they are noetherian too (!). Often we will be working with local rings,
but whenever we do so we will be explicit about it.
The main references are [SGA2, 2, 7, 6]. Each of them has a different take on the
subject, different emphasis and different goals. Whenever results aren’t referenced
probably, it is best to look in [2]. For a more condensed approach to the subject, see
[6], which is perfect for cursory reading.
We have seen Krull dimension in a previous lecture, which was a measure of “how
big the ring is”, geometrically speaking: the Krull dimension of the ring A is equal to
the dimension1 of the topological space Spec A.
But Krull dimension alone is not a sufficient measure in algebraic geometry. If we
consider singularities we want to know some properties of them: can we “measure”
how singular things are? Of course, the dimension of the singular locus is something
that could interest us: if we intersect two lines in a single point, or we intersect two
planes in a line, we get a measure on the size of the singular locus. But what if we
want to know something about “how complicated” a singularity is?

1.1 Regular sequences

Something that we can study besides Krull dimension is the codimension of an
ideal I in A. The question becomes: how does Spec A/I relate to Spec A? As we have
taken A noetherian we have that I is finitely generated. Is there a way of choosing
the generators of I in such a way that we can deduce something interesting?
Remark that codimension is of course defined regardless of how we generate I . But
considering the generators as hypersurfaces we wish to compute codimension by
counting the number of times we have interested hypersurfaces. By Krull’s principal
ideal theorem intersecting with a hypersurface let’s the dimension drop with at most
one.

Definition 1. Let A be a ring. Let M be a module over A. A sequence of ele-
ments x1, . . . , xn in A is a regular sequence on M if

1. (x1, . . . , xn)M 6= M ;

2. x i is a non-zerodivisor in M/(x1, . . . , x i−1)M for all i = 1, . . . , n.

Example 2. Take A= k[x , y, z] with k a field. Take M = A. Then the most classical
regular sequence (if we wish to describe a point) would be

(1) x , y, z.

This one is a bit boring. Remark that we could also consider shorter regular sequences
if one is interested in higher-dimensional results. Now let’s look at:

(2) x , y(1− x), z(1− x),

which is a regular sequence:
1It is a noetherian topological space, hence dimension is defined as the supremum over the lengths of

descending chains of closed subsets. So they must agree, by the very definition of the Zariski topology.
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1. we have 1 /∈ (x , y(1− x), z(1− x)) = (x , y, z);

2. x is not a zerodivisor in k[x , y, z], y is not a zerodivisor in k[y, z] and z is
not a zerodivisor in k[z].

On the other hand,

(3) y(1− x), z(1− x), x

is not a regular sequence:

1. the ideal generated is the same as for the previous regular sequence, so the
first condition is still satisfied;

2. the condition fails at the second step:

(4) z(1− x)y = z y − zx y = z y − z y = 0,

so z(1− x) is a zerodivisor in A/(x1)A, which is not allowed.

Hence the order of the regular sequence is important2.

Fortunately, if we look at local rings, things are nicer [2, corollary 17.2]. And as we
intend to study singularities this is good enough.

Lemma 3. Let (A,m) be a local ring3. If a1, . . . , an is a regular sequence with ai ∈ m,
then any permutation is again a regular sequence.

One now sees some analogy with the notion of a regular local ring.

Definition 4. Let (A,m) be a local ring. If m= (a1, . . . , an) is a way of generating m
with a minimal number of generators such that dim A= n, then A is regular.

So for every regular local ring of Krull dimension n we get a regular sequence of
length n. The goal of this note is to show that by relaxing the definition of regular
we can get many results for singular rings which are analogous to the regular case.

1.2 Depth

Knowing what a regular sequence is we can introduce depth. Or give a seemingly
totally unrelated definition.

Definition 5. Let A be a ring. Let I be an ideal of A. Let M be a finitely generated
module over A such that I M 6= M . Then the depth of I with respect to M is the
number

(5) depthI(M) :=min
i∈N

¦

i | Exti
A(A/I , M) 6= 0

©

Unfortunately, this definition does not have a geometric flavour to it. It is known
as codimension homologique in [7], for which the motivation (besides the obvious

2One can prove though that if an ideal is generated by some regular sequence, then we can find
generators for this ideal such that they form a regular sequence for any permutation [2, exercise 17.6]. I
haven’t done this exercise, but one sees that taking the regular sequence x , y, z suffices in this case. The
reader is invited to do the general exercise and tell me about it.

3Recall that all rings are noetherian. I won’t repeat this from now on, but it’s important to know this
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homological flavour to the definition) can be found in [7, proposition 21]. The term
grade is also in use by the way.
The following result by David Rees shows that we do have a geometric interpretation.

Theorem 6. Let (A,m) be a local ring. Let M be a finitely generated A-module. Then
all maximal regular sequences x1, . . . , xn for M such that x i ∈ m have length equal
to depthm(M).

So the depth is a measure of how much we can cut down things using hypersurfaces,
where each intersection has to drop the dimension by 1. This also yields the bound

(6) depthm(A)≤ dim A

as cutting down by a hypersurface can at most drop the dimension by 1 (recall
Krull’s principal ideal theorem). So the depth of a ring (i.e. the depth of the ring
over itself) measures how much we can cut things down in a non-trivial way.
The terminology is of course related to the height of a prime ideal: height is
dimension, depth “tries to be” codimension.

Example 7. Let A= k[x , y]/(x2, x y). This represents the affine line with an em-
bedded double point at the origin. So we localise this ring with respect to the origin.
The Krull dimension of this ring is 1: it is the local ring of the affine line (plus some
lower-dimensional stuff).
The depth of this local ring is 0: we cannot cut down the embedded component
in the direction of the y-axis any further. If there was no “fuzzy direction”, i.e. if
we started with k[x , y]/(x y) there wouldn’t be a problem. We would have two
one-dimensional components, related to the two axes, and we can cut them down by
a hypersurface. So the problem is related to the ring having components of different
dimension, which is a condition that has to be satisfied for the equality (6) to hold,
as seen in section 2.3.

For more examples of computing the depth of a ring we refer to section 2, where we
give some more geometric examples of the (in)equality (6).

1.3 Cohen–Macaulay rings

The (in)equality (6) allows to make the following definition.

Definition 8. Let (A,m) be a local ring. Then A is Cohen–Macaulay if

(7) depthm(A) = dim A.

Let A be any ring. Then A is Cohen–Macaulay if the localisation Ap is Cohen–Macaulay
for all p ∈ Spec A.

As a matter of fact, it suffices to impose this condition only at the closed points [2,
proposition 18.8].
How can we interpret this? In some sense we can say that Krull dimension measures
things from bottom to top: we start from the zero-dimensional parts and go up.
Depth on the other hand is characterised by Rees in terms of regular sequences:
these cut the whole ring down using hypersurfaces. So Cohen–Macaulay rings are
those rings for which it doesn’t matter in which way we measure things: depth and
height are complementary.
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1.4 Gorenstein rings

To define the notion of a Gorenstein ring we will take the “easier” or “modern”
definition that is used nowadays. In theorem 11 the equivalence with a more
classical or geometric definition will be discussed.
In the previous lecture we have seen homological dimensions for rings. If we consider
a ring as a module over itself, its projective dimension is rather boring (a free module
of rank one is a projective resolution of itself). In the case of injective dimension we
get something interesting: a ring is rarely injective over itself. If the ring is reduced,
being self-injective is equivalent to being 0-dimensional (in the Krull dimension
sense). So the next best thing to ask for is:

Definition 9. Let A be a local ring. Then A is Gorenstein if A as an A-module has
finite injective dimension.
Let A be a ring. Then A is Gorenstein if the localisation Ap is Gorenstein for ev-
ery p ∈ Spec A.

We haven’t argumented why having finite injective dimension is a reasonable thing
to ask. That will be done when discussing the properties shortly. An interesting thing
to remark is that Serre has characterised regular local rings as exactly those rings
for which the global dimension is finite (and equal to the Krull dimension).

Remark 10. Gorenstein rings are named after Daniel Gorenstein, who introduced
them in 1952 in the case of (singular) points on curves. This zero-dimensional case
was generalised later on by Bass [1], Grothendieck [3] (studying duality results, as
discussed in a previous lecture series!) and Serre. Famously, Daniel Gorenstein used
to say that he didn’t understand the definition of a Gorenstein ring himself. He is
mostly known for his great contributions to the classification of finite simple groups.

The wonderful article [1] shows the equivalence of the homological definition to
a more geometric notion, related to the Cohen–Macaulayness we just introduced.
Let’s quote (parts of) this result.

Theorem 11. Let A be a ring. The following conditions are equivalent:

1. A is Gorenstein (so here we defined it to have finite injective dimension at all
local rings);

2. Ap is Cohen–Macaulay for every p ∈ Spec A (respectively p ∈MaxSpec A) and
some system of parameters generates an irreducible ideal in Ap;

3. Ap is Cohen–Macaulay for every p ∈ Spec A (respectively p ∈MaxSpec A) and
every system of parameters generates an irreducible ideal in Ap.

Recall that irreducible ideals are ideals which cannot be written as the intersection of
two larger ideals. Every prime ideal is irreducible, every irreducible ideal is primary.
The closed subset defined by an irreducible ideal is irreducible as a topological
space.
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2 Properties

2.1 Relations between regular, Gorenstein and Cohen–Macaulay
rings

So we have three notions of rings, each of them motivated by measuring how
singular things are. How do these relate? The answer is really nice: we have the
sequence

1. regular;

2. Gorenstein;

3. Cohen–Macaulay;

where each condition is (strictly) more general than the one above. That a regular
ring is Cohen–Macaulay is easy to see from the properties discussed in section 1,
this was proved by Macaulay for polynomial rings and by Cohen for formal power
series. This motivates the name Cohen–Macaulay.
The fact that regular rings are Gorenstein is covered by the discussion on complete
intersections in section 2.2. That Gorenstein rings are Cohen–Macaulay follows from
theorem 11.
Examples showing that each condition is strictly more general than the one above
are given in section 2.3.

2.2 Complete intersections

We now discuss an important class of Gorenstein rings.

Definition 12. Let V be an algebraic variety inside Pn
k such that dim V = m. Then V

is a complete intersection if the ideal describing V can be generated by exactly n−m
elements (and no more).

This means that V has the “right” codimension: each equation in the ideal describ-
ing V defines a hypersurface, the dimension can drop by at most 1. Hence we
require that the hypersurfaces intersect eachother in such a way that the maximal
codimension is achieved. Remark that the resulting variety can have a large singular
locus, but that is okay as long as the codimension of the whole thing is as expected.

Example 13. Examples of complete intersections are abound: any hypersurface will
do.

Example 14. The easiest example of a variety which is not a complete intersection
is the twisted cubic. It is the curve in P3

k given as the image of

(8) P1
k → P

3
k : [s : t] 7→ [s3 : s2 t : st2 : t3].

Hence locally on an affine chart it is (t, t2, t3) (up to some reordering). This curve
is described by the (homogeneous) ideal

(9) (xz− y2, yw− z2, xw− yz)

in the graded ring k[x , y, z, w]. So we need three (quadratic) equations, but we end
up with a codimension 1 and not a codimension 0 subvariety.
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Set-theoretically speaking everything is nice: it is the intersection of the quadric
surface xz − y2 = 0 and the cubic surface z(yw − z2)−w(xw − yz) = 0. But ideal-
theoretically speaking the twisted cubic should have degree 3 by a generalisation
of the Bézout theorem, which is only possible if we intersect a plane with a cubic
surface. This is not possible, as no four distinct points on the twisted cubic are
coplanar, but if we intersect with a plane everything is coplanar.

Introducing the notion of being a complete intersection is interesting because we
have [2, corollary 21.19] (translating things to local rings instead of projective
spaces):

Theorem 15. Let A be a regular local ring. If I is an ideal generated by a regular
sequence (i.e. A/I is a complete intersection) then A/I is Gorenstein.

The proof uses the fact that we have a Koszul resolution by the regular sequence,
which is a minimal free resolution of A/I . This gives us information on the highest
Ext-group of A/I and A, and by the relationship between dualising objects and
Gorenstein rings [2, theorem 21.15] we get the result.

2.3 Counterexamples

So we have a hierarchy of being singular:

1. regular;

2. Gorenstein;

3. Cohen–Macaulay.

Moreover we have seen that each condition implies the one above it. Now we come
to the counterexamples!

Gorenstein but not regular First some rings that are Gorenstein, but not regular.

Example 16. As every complete intersection is Gorenstein by theorem 15 it suffices
to take a complete intersection which is not regular. Just taking a hypersurface that
is singular suffices: k[x , y]/(x2 − y3). This is a one-dimensional ring, with a mild
singularity at the origin (so it is the local ring at the origin which is Gorenstein but
not regular, all the others are of course regular).

Example 17. Or we could take k[x]/(x2), which is a non-reduced point.

Example 18. Or we could take k[x , y]/(x2, y3), again fuzzy, but now in two dif-
ferent directions. So it’s a complete intersection, but not regular for two different
reasons.

It is also interesting to have (non-regular) Gorenstein rings which are not complete
intersections. To obtain one we have to do some effort, the following results severely
limit the places where we can find examples:

1. almost complete intersections (i.e. if the codimension of V is m then the defin-
ing ideal has a minimal set of generators of size m+ 1) are never Gorenstein;

2. in codimension 2 we have that being Gorenstein is equivalent to being a
complete intersection [2, corollary 21.20];
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3. . . .

So to write down a possible example, we should at least start from the ring k[x , y, z]
(or its local version k[[x , y, z]]) for codimension 3 to make sense, and we will
need to have (at least) five defining equations (four would be an almost complete
intersection, but oddly enough these are never Gorenstein).

Example 19. Consider

(10) k[x , y, z]/(x2, y2, xz, yz, z2 − x y),

which is a bunch of fuzzy things in 3 different directions in the origin.

Now that we have seen a counterexample, we can discuss some other restrictions
that we know, if one wishes to find more complicated examples:

1. if the codimension c is 3 (e.g. as in the previous example) then the number of
generators must be odd, so we cannot find an example with six generators;

2. if the codimension c is ≥ 4 we can find examples for any number of genera-
tors ≥ c+ 2, but some other restrictions apply.

Cohen–Macaulay but not Gorenstein The restriction that we can use now is:

1. in codimension 1 we have that Cohen–Macaulay is equivalent to Gorenstein
[2, corollary 21.20];

So we want something that is not a complete intersection (because these are Goren-
stein), but rather an almost complete intersection (which are never Gorenstein).
Moreover we want it to be in codimension 2.

Example 20. Consider

(11) k[x , y]/(x2, y2, x y)

which is again a bunch of fuzzy stuff around the origin.

Not Cohen–Macaulay To find a ring that is not Cohen–Macaulay we can do several
things. The following results tell us where to look:

1. Cohen–Macaulay rings are universally catenary [2, corollary 18.10];

2. Cohen–Macaulay rings are equidimensional [2, corollary 18.11];

3. Hartshorne’s connectedness principle: if A is Cohen–Macaulay, I and J are
proper ideals of A such that their radicals are incomparable then necessar-
ily codim(I + J)≤ 1, [2, theorem 18.12].

This first condition is virtually useless: rings that are not universally catenary are
really hard to come up with. For an example, see [Stacks, tag 02JE]. So, it is possible
to find examples of rings that are not Cohen–Macaulay this way, but it’s not really
enlightening.
The second condition is more promising. Recall that being equidimensional means
that all the maximal ideals have the same codimension, and all minimal primes have
the same dimension. For a local ring (without embedded components) this reduces
to the geometric property of all irreducible components having the same dimension.
So finding an example becomes easy.
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Example 21. The intersection of a plane and a line in a single point is not Cohen–
Macaulay. At the singular point there are two minimal primes: one corresponding to
the plane and one corresponding to the line. These don’t have the same dimension,
hence the ring is not Cohen–Macaulay.

The example given in section 1.2 also falls into this class of counterexamples.
The third condition is also interesting, and is related to what we will discuss in
section 2.6. Geometrically speaking we have to find a situation in which we have
two things intersection eachother in a single point such that removing the point from
the spectrum of the local ring makes the resulting topological space disconnected.

Example 22. Consider the intersection of two planes inside A4
k, in a single point.

This is possible (think linear algebra) and has a picture associated to it. If we remove
the closed point in the local ring for the intersection (which is of codimension
2) we end up with two components which are disjoint, hence this ring cannot be
Cohen–Macaulay.

2.4 Some facts

Without further ado, some random facts:

1. A local is Cohen–Macaulay if and only if Â is Cohen–Macaulay [2, proposition
18.8];

2. A local is Gorenstein if and only if Â is Gorenstein [2, proposition 21.18];

3. A is Cohen–Macaulay if and only if A[x] is Cohen–Macaulay [2, proposition
18.9];

4. determinantal rings are Cohen–Macaulay [2, theorem 18.18];

5. if G is a linearly reductive algebraic group acting by linear transformations
on k[x1, . . . , xn] then the ring of invariants SG is Cohen–Macaulay [2, §18.5];

2.5 Auslander–Buchsbaum formula

A less random fact is the Auslander–Buchsbaum formula [2, theorem 19.9]. It relates
the projective dimension to the depth by saying that they are complementary to
eachother.

Theorem 23. Let (A,m) be a local ring. Let M be a finitely generatd A-module such
that proj dimA(M)<+∞. Then

(12) proj dimA(M) + depthm(M) = depthm(A).

This allows one to obtain a recognition theorem for Cohen–Macaulay rings [2,
corollary 19.10].
Corollary 24. Let (A,m) be a local ring. If there exists some finitely generated A-mod-
ule of projective dimension equal to dim A then A is Cohen–Macaulay.
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2.6 Intersection multiplicity

Cohen–Macaulay rings are the type of rings for which intersection multiplicity “works
as expected”. The same phenomenon of “working as expected” is pervasive for these
mildly singular rings, another manifestation will be seen in the next paragraph.
Due to lack of time and space (these notes are meant for a 30 minute lecture. . . ), I
will just say that to compute intersection numbers in general one has to use Serre’s
Tor-formula, which (without any further explanation) reads

(13) µ(X ; Y, Z) =
+∞
∑

i=0

(−1)i lengthOX ,x

�

Tor
OX ,x

i (OX ,x/Ix ,OX ,x/Jx)
�

and that for Cohen–Macaulay rings it suffices to consider the first term only. One is
referred to [7] for the whole story. The example of two planes in 4-space intersecting
in a single point is an example of where it is possible to explicitly compute the terms
in the Tor-formula, and see why we actually need it.

2.7 Grothendieck duality

During my lectures on Grothendieck duality I have often used the term “mildly
singular”. Depending on the context one has to think Gorenstein or Cohen–Macaulay
when confronted with “mildly singular”. Already in [1] the link with Grothendieck
duality is realised:

The material of this paper seems to have connections with Grothendieck’s
Bourbaki exposé on duality theorems [3], but which I am not competent
to elaborate. Undoubtedly all of what follows is peripheral to the ideas
of that paper.

Recall that Grothendieck duality was concerned with the existence of a dualising
complex [5], generalising the idea of duality of (finite-dimensional) vectorspaces.
One of the main problems (besides its existence) is determining the properties of
this dualising complex. If one knows something about how singular the scheme in
question is we can get the answer, which is given in table 1. So to summarise:

how nice is X? how nice is ω◦X ?

X smooth ω◦X =
∧dim X ΩX [dim X ]

X Gorenstein ω◦X shift of a line bundle by dim X
X Cohen–Macaulay ω◦X shift of a sheaf by dim X

X arbitrary ω◦X is a complex

Table 1: Comparison of the singularities of X and the look of ω◦X

1. if X is Gorenstein the dualising complex is as nice as the smooth case;

2. if X is Cohen–Macaulay we could build up the theory without derived cate-
gories to some extent, as is done in [4].
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The rather unintuitive algebraic notions (from a geometric or topological point of
view) of being Gorenstein or Cohen–Macaulay therefore have important implications
in algebraic geometry! When applied to affine schemes, it means that the dualising
object for a Gorenstein ring is the ring itself (which is just like the situation for a
regular ring), whereas for a Cohen–Macaulay ring it will be “just” a module.
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