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In the non-commutative case the notion of Krull dimension does not work
as well anymore because of a lack of symmetry between left and right ideals.
Therefor another way of saying that an algebra should be small is stat-
ing that it should have finite GK-dimension or equivalently: it should have
polynomial growth. Below we briefly explain what this means. Our main
reference is [2].

We first define growth of an algebra A that is finitely generated over a
field k. This notion is similar to growth of finitely generated groups as con-
sidered in [1] and when we mention growth of groups we will use the same
notation as used in loc. cit.

Definition 0.1. Let k be a field and A a finitely generated k-algebra. Sup-
pose that V is a finite dimensional generating subspace for A, i.e.

A= UVnwhereVn:k+V+V2+...+V"
neN

We associate a growthfunction to V' as follows:
dy :n— dim(Vy,)
There are some remarks concerning this definition.

Remark.

1. One can notice that such a finite dimensional generating subspace
always exists, since if A is finitely generated by elements aq, ..., am,
we may set
V =ka1+ ...+ kan.

2. With any choice of V satisfying 14 € V we have V¢ C Vi*+1 and thus
dy(n) = dim(V") is an increasing function. It is clear that if A is
finite dimensional this function will become constant for large values
of n.



3. In case A is a graded algebra which is finitely generated in degree
1, then the growth function is closely related the Hilbert function:
n — dimg(A,). For one can take V = kaj + ... + ka,, where the
a; are the degree 1 generators, in which case A, = V™. Hence if the
Hilbert function is a polynomial of degree A, then dy is a polynomial
of degree A + 1.

4. The definition of dy depends on the choice of generating subspace.
This dependence may be removed by introducing a suitable equiva-
lence relation.

Definition 0.2. Let ® denote the set of all functions f : N — R™ that are
eventually monotone increasing, i.e.

f(n+1)> f(n) for almost all n € N.

For f,g € ® we say that f is dominated by g, written f < g, if and only if
there exist positive integers ¢ and m such that

f(n) <cg(mn) for almost all n € N.

We say that f and g are equivalent if and only if f < g and f = ¢g. This
will be denoted by f ~ g. The "growth” of f € ® is the equivalence class
G(f) € Phi/ of f. The relation < induces an order < on &/ ~.

If we consider f(n) = n+ 1 and g(n) = n? then f < g but the condition
f(n) < cg(mn) is always false for n = 0. This shows that the restriction to
“almost all n” in the definition of < is important.

The following results follow immediatly from the definition:

e For any real number v we denote py : n — nY and P, = G(p,). If
f(n) = pg and g(n) = p then f x g & a < b. As a result two
polynomial functions are equivalent iff they have the same degree.

e Any pair of exponential functions with bases > 1 are equivalent, i.e.
if f(n) = a™ and g(n) = b™ with a,b > 1 then G(f) = G(g). We
will denote their growth by ;. More generally e = G (n — e”s) and
obviously e < g, & € <.

The next proposition states that modulo this equivalence the growth func-
tions do not depend on the generating set.

Proposition 0.3. Let A be a finitely generated k-algebra with finite dimen-
sional generating subspaces V- and W, then G(dy) = G(dw ).

Proof. By symmetry we only have to show dy < dyy.
Since A = UneNk: +V + V24 ...+ V"™ there exists a ¢ > 1 such that
VC1+W+...+ W€ hence dy(n) < dw(cn) O



As aresult we can say things like the growth of an algebra by simply choosing
any generating subspace V. Since the choice of this subspace is arbitrary
we will always assume 14 € V for simplicity.

Definition 0.4. With the same notations as above we set G(A) = G(dy) to
be the growth of the algebra A and A is said to have

e polynomial growth if G(A) < P, for some m € N
e exponential growth if G(A) = &,

This terminology is very similar to the one used for groups. In fact one has
the following result

Theorem 0.5. Let G be a finitely generated group.
Then k|G] = {finite sums }_ cc x4 g} is a finitely generated k-algebra hav-
ing the same (class of ) growth as G.

Proof. Since growth of a group does not depend on the generating subset
it’s sufficient to show that 7(3; ~ dy for some finite generating subset S for
G and finite dimensional generating subspace V for k[G].

Take S such that it contains all inverses of it’s elements as well as the
identity element, then k[S] is a finite dimensional generating subspace of
k[G] containing 1. Moreover this choice implies Vg = dis] O

Examples. e Consider G = 7™, it was found in [1] that G has polyno-
mial growth (it grows like P,,). So k[X1, X; 1, ..., X, X1 = k[Z7)
is a finitely generated k-algebra having polynomial growth

e On the contrary any free algebra k (1, ..., x,,) has exponential growth
if m > 2.
n ) ntl _q
For this take V = kxzq + ... kxy,, then dy(n) = Zml S ——
=0 m =1



1 Gelfand-Kirillov dimension

Now we want to introduce the Gelfand-Kirillov dimension. But before we
do so, we first give an arithmatic result.

_ log(f(n)))

. T
log(n) hen

Proposition 1.1. Let f,g € ® and denote log,, (f(n))

1. The following 3 are equal:

Elogn f(n) = inf{AeR| f(n) <n* for almost all n}
— inf(AeR|G(f) < P}

where we set inf(f)) = oco.

2 I/ G(f) = Glg) then Tan log, (f(n)) = Tn log, (g(n).

n—o0

Proof. 1. (Similar to the proof of [2, Lemma 2.1])
Denote the three numbers mentioned by 7, s and ¢ (in that order).
It’s easy to see that if one of them is infinite, so are the others. It’s
also immediate that ¢ < s.

To prove s < r one notices that for any € > 0 fixed we have f(n) < n"*¢
for almost all n.

We are only left to show r < t, this can be done by contradiction.

So suppose 7 > t. Take ¢ = £ > 0. Since G(f) < Piyc there
are positive integers c¢,m such that f(n) < c- (mn)te < pit2e =
n"~¢ for almost all n. This is a contradiction since it would imply

limlog, f(n) <r —e.

2. Trivial by 1.
O

Remark that 2. of the above proposition implies that there is a well defined
function: li_1>n log, : ®/ ~ — R*. It also makes sure the following is well
n o

defined

Definition 1.2. The Gelfand-Kirillov dimension of a finitely generated k-
algebra A is defined as

GKdim(A) = li_)m log,,(dv(n))

where V' is an arbitrary finite dimensional generating subspace.
In case A is not finitely generated, one defines:

GKdim(A) = sup{ GKdim(A) | A C A is a finitely generated sub-k-algebra }



As most algebras we encounter will be finitely generated, we are mainly in-
terested in the “easy” part of the definition.

An immediate corollary of Propostion 1.1 is:
Corollary 1.3. Let A be a finitely generated k-algebra,
o IfG(A) = Py then GKdim(A) = A
o I[f GKdim(A) < oo then A has polynomial growth.
o IfG(A) =¢e1 then GKdim(A) = o0

Some caution is required concerning the definition of polynomial growth as
was introduced in Definition 0.4. For Elogn f(n) = X does not imply
G(f) =Py

f(n) =log(n + 1) - n serves as a counter example.

Remark however that log(n + 1) - n* < n** hence it does have polynomial
growth.

Examples.

e If A is a finitely generated k-algebra, GKdim(A) = 0 if and only if
A is finite dimensional so the Gelfand Kirillov dimension somehow
measures how much a finitely generated algebra fails to be finite di-
mensional’

o GKdim(k[xy,...,xn]) < m. To see this take V' = kzy + ... kxy, then
Veo=1®V...® V" hence

dy(n) = _dim(V") =3 <m o 1 1) < (n+1)-(m+n)"t g 0™
=0

m —
=0

(In fact GKdim(k[x1,...,2m]) = m as will follow from Proposition
2.2 or Corollary 2.3)

e Any free algebra k (x1, ..., x,,) with m > 2 has infinite G K —dimension.
(This follows from the second example after Theorem 0.5)

We now give some propositions without proofs:

Proposition 1.4. Let A be any k-algebra If A is a finitely generated commu-
tative ring, then the Gelfand Kirillov dimension equals its Krull dimension
(and hence is a nonnegative integer).

Proof. [2, Theorem 4.5] O

'In the more general case GKdim(A) = 0 if and only if A is locally finite dimensional.
L.e. every finitely generated sub-k-algebra is finitely generated



Proposition 1.5. GKdim(A) € {0} U {1} U [2,00] and for each of these
numbers there is an algebra having this Gelfand Kirillov dimension.

Proof. GKdim(A) = 0 if and only if A is finite dimensional as a vectorspace
over k. If A is not finite dimensional, then dy (n) < dy(n+1) for all n, hence
dy(n) = n and GKdim(A) > 1. Examples for Gelfand Kirillov dimension 0
and 1 are k and k[z].

The fact that GKdim(A) > 1 implies GKdim(A) > 2 is known as Bergman’s
Gap Theorem ([2, Theorem 2.5] or [2, Section 12.2] for a proof using Uf-
narovskii graphs).

As GKdim(A[z]) = GKdim(A) + 1 it suffices to give for any A €]2,3[ an
algebra A, with GKdim(Ay) = A. This follows from [2, Theorem 1.8] by
choosing f(z) = (x + 1)* (up to some scalar factor). O

Quite recently the following result was proven in [3]:

Proposition 1.6. There are no graded domains with GK-dimension strictly
between 2 and 3.



2 Ore-extensions

Proposition 2.1. Let k be a field, A a k-algebra, o0 : A — A a k-algebra
morphism and § : A — A a k—linear o—derivation. Then GKdim(A|x,o,d]) >
GKdim(A) + 1.

Proof. Let V be a finite dimensional generating subspace for A, containing
1. Then V + kx obviously is finite dimensional as well and it is a generating
subspace for Az, 0, 4d].
Moreover for each n € N,i < n: V" C V2" ~iz’ hence we have

Vi Vi + ...+ V" C (V4 kx)™
From this inclusion follows (n + 1)dy (n) < dy4x.(2n) and the inequality is

immediate:

GKdim(A[z,0,0]) = li_)m log,,(dy 1+xz(n))

n

(
= 1_)1101O log,, (dy 11z (2n))
> lim log,((n + 1)dy(n))
= lim (log,(n + 1) +log,(dv(n)))

n—o0
= 1+ GKdim(A)
O

Proposition 2.2. Equality holds in the above Proposition if A admits a
finite dimensional generating subspace V' such that (V) C V.

Proof. Let V be a finite dimensional generating subspace for A with o(V) C

Vand1 e V. Since A = U V" there exists an m > 1 such that §(V) C V'™
n=0
and

S(VYHY c a(V)S(V™) + 8(V)V"

It follows by induction on n that §(V"™) C V™. By induction we also show
that
(V4+Ekx)" CcV™ 4 VMg 4 4 V"

This is obvious for n = 0,1 and for the induction step remark that

V(V 4 kx)" < vyl pymntly o ymntlgn
C Vm(n—l—l) + Vm(n—l—l)x 4.+ Vm(n—l—l)xn
and
x(V+kx)" C V™ 4. 2V
C o (V™)z + 5V 4 o (V) g gV
cC VMg an—l—m 4.+ anxn+1 + an—l—mxn
C Vm(n+1) + Vm(n—l—l)a: 4.+ Vm(n—l—l)xn + ymn pntl



Hence dy 4 1y(n) < (n + 1)dy (mn) and
GKdim(Alz,0,6]) = Tim log,(dv-ks(n))
< lim log,((n +1)dy (mn))
= Tim (log,(n+ 1) +log, (dv (mn)))
= 1+ nh_)ngo log,,(dy(n))
= 1+ GKdim(A)

(o]

Corollary 2.3. Let A = EB A, be a graded k— algebra where V.= Ag+ Ay
n=0

s a finite dimensional generating subspace, o a graded A-morphism of degree

zero and § a o-deriwation. Then GKdim(Alx,o,0]) = GKdim(A) + 1.
Examples.

o GKdim(Alxy,...,xn]) = GKdim(A) + m, showing that the polyno-
mial ring over k has Gelfand-Kirillov dimension equal to its number
of variables.

e The n'* Weyl algebra A,, has Gelfand Kirillov dimension equal to 2n.

)

(recall A1 = Aplznsa]lynsr, Id, 3
Tn41
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