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In the non-commutative case the notion of Krull dimension does not work
as well anymore because of a lack of symmetry between left and right ideals.
Therefor another way of saying that an algebra should be small is stat-
ing that it should have finite GK-dimension or equivalently: it should have
polynomial growth. Below we briefly explain what this means. Our main
reference is [2].

We first define growth of an algebra A that is finitely generated over a
field k. This notion is similar to growth of finitely generated groups as con-
sidered in [1] and when we mention growth of groups we will use the same
notation as used in loc. cit.

Definition 0.1. Let k be a field and A a finitely generated k-algebra. Sup-
pose that V is a finite dimensional generating subspace for A, i.e.

A =
⋃

n∈N

Vn where Vn = k + V + V 2 + . . .+ V n

We associate a growthfunction to V as follows:

dV : n !→ dim(Vn)

There are some remarks concerning this definition.

Remark.

1. One can notice that such a finite dimensional generating subspace
always exists, since if A is finitely generated by elements a1, . . . , am,
we may set
V = ka1 + . . . + kam.

2. With any choice of V satisfying 1A ∈ V we have V i ⊂ V i+1 and thus
dV (n) = dim(V n) is an increasing function. It is clear that if A is
finite dimensional this function will become constant for large values
of n.
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3. In case A is a graded algebra which is finitely generated in degree
1, then the growth function is closely related the Hilbert function:
n !→ dimk(An). For one can take V = ka1 + . . . + kam where the
ai are the degree 1 generators, in which case An = V n. Hence if the
Hilbert function is a polynomial of degree λ, then dV is a polynomial
of degree λ+ 1.

4. The definition of dV depends on the choice of generating subspace.
This dependence may be removed by introducing a suitable equiva-
lence relation.

Definition 0.2. Let Φ denote the set of all functions f : N → R+ that are
eventually monotone increasing, i.e.

f(n+ 1) ≥ f(n) for almost all n ∈ N.

For f, g ∈ Φ we say that f is dominated by g, written f ! g, if and only if
there exist positive integers c and m such that

f(n) ≤ cg(mn) for almost all n ∈ N.

We say that f and g are equivalent if and only if f ! g and f " g. This
will be denoted by f ∼ g. The ”growth” of f ∈ Φ is the equivalence class
G(f) ∈ Phi/ of f . The relation ! induces an order ≤ on Φ/ ∼.

If we consider f(n) = n + 1 and g(n) = n2 then f ! g but the condition
f(n) ≤ cg(mn) is always false for n = 0. This shows that the restriction to
”almost all n” in the definition of ! is important.
The following results follow immediatly from the definition:

• For any real number γ we denote pγ : n !→ nγ and Pγ = G(pγ). If
f(n) = pa and g(n) = pb then f ! g ⇔ a ≤ b. As a result two
polynomial functions are equivalent iff they have the same degree.

• Any pair of exponential functions with bases > 1 are equivalent, i.e.
if f(n) = an and g(n) = bn with a, b > 1 then G(f) = G(g). We
will denote their growth by ε1. More generally εϵ = G

(

n !→ en
ϵ
)

and
obviously εϵ ≤ εη ⇔ ϵ ≤ η.

The next proposition states that modulo this equivalence the growth func-
tions do not depend on the generating set.

Proposition 0.3. Let A be a finitely generated k-algebra with finite dimen-
sional generating subspaces V and W , then G(dV ) = G(dW ).

Proof. By symmetry we only have to show dV ! dW .
Since A =

⋃

n∈N k + V + V 2 + . . . + V n there exists a c ≥ 1 such that
V ⊂ 1 +W + . . .+W c, hence dV (n) ≤ dW (cn)
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As a result we can say things like the growth of an algebra by simply choosing
any generating subspace V . Since the choice of this subspace is arbitrary
we will always assume 1A ∈ V for simplicity.

Definition 0.4. With the same notations as above we set G(A) = G(dV ) to
be the growth of the algebra A and A is said to have

• polynomial growth if G(A) ≤ Pm for some m ∈ N

• exponential growth if G(A) = ε1

This terminology is very similar to the one used for groups. In fact one has
the following result

Theorem 0.5. Let G be a finitely generated group.
Then k[G] = {finite sums

∑

g∈G xg ·g} is a finitely generated k-algebra hav-
ing the same (class of) growth as G.

Proof. Since growth of a group does not depend on the generating subset
it’s sufficient to show that γSG ∼ dV for some finite generating subset S for
G and finite dimensional generating subspace V for k[G].
Take S such that it contains all inverses of it’s elements as well as the
identity element, then k[S] is a finite dimensional generating subspace of
k[G] containing 1k[G]. Moreover this choice implies γSG = dk[S]

Examples. • Consider G = Zm, it was found in [1] that G has polyno-
mial growth (it grows like Pm). So k[X1,X

−1
1 , . . . ,Xm,X−1

m ] ∼= k[Zm]
is a finitely generated k-algebra having polynomial growth

• On the contrary any free algebra k ⟨x1, . . . , xm⟩ has exponential growth
if m ≥ 2.

For this take V = kx1 + . . . kxm, then dV (n) =
n
∑

i=0

mi =
mn+1 − 1

m− 1
.
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1 Gelfand-Kirillov dimension

Now we want to introduce the Gelfand-Kirillov dimension. But before we
do so, we first give an arithmatic result.

Proposition 1.1. Let f, g ∈ Φ and denote logn(f(n)) =
log(f(n)))

log(n)
. Then

1. The following 3 are equal:

lim
n→∞

logn f(n) = inf{λ ∈ R | f(n) ≤ nλ for almost all n}

= inf{λ ∈ R | G(f) ≤ Pλ}

where we set inf(∅) = ∞.

2. If G(f) = G(g) then lim
n→∞

logn(f(n)) = lim
n→∞

logn(g(n)).

Proof. 1. (Similar to the proof of [2, Lemma 2.1])
Denote the three numbers mentioned by r, s and t (in that order).
It’s easy to see that if one of them is infinite, so are the others. It’s
also immediate that t ≤ s.

To prove s ≤ r one notices that for any ϵ > 0 fixed we have f(n) ≤ nr+ϵ

for almost all n.

We are only left to show r ≤ t, this can be done by contradiction.
So suppose r > t. Take ϵ = r−t

3 > 0. Since G(f) ≤ Pt+ϵ there
are positive integers c,m such that f(n) ≤ c · (mn)t+ϵ ≤ nt+2ϵ =
nr−ϵ for almost all n. This is a contradiction since it would imply
lim logn f(n) ≤ r − ϵ.

2. Trivial by 1.

Remark that 2. of the above proposition implies that there is a well defined
function: lim

n→∞
logn : Φ/ ∼ → R

+. It also makes sure the following is well

defined

Definition 1.2. The Gelfand-Kirillov dimension of a finitely generated k-
algebra A is defined as

GKdim(A) = lim
n→∞

logn(dV (n))

where V is an arbitrary finite dimensional generating subspace.
In case A is not finitely generated, one defines:

GKdim(A) = sup{GKdim(Ã) | Ã ⊂ A is a finitely generated sub-k-algebra }
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As most algebras we encounter will be finitely generated, we are mainly in-
terested in the “easy” part of the definition.

An immediate corollary of Propostion 1.1 is:

Corollary 1.3. Let A be a finitely generated k-algebra,

• If G(A) = Pλ then GKdim(A) = λ

• If GKdim(A) < ∞ then A has polynomial growth.

• If G(A) = ε1 then GKdim(A) = ∞

Some caution is required concerning the definition of polynomial growth as
was introduced in Definition 0.4. For lim

n→∞
logn f(n) = λ does not imply

G(f) = Pλ.
f(n) = log(n+ 1) · nλ serves as a counter example.
Remark however that log(n+ 1) · nλ ! nλ+1 hence it does have polynomial
growth.

Examples.

• If A is a finitely generated k-algebra, GKdim(A) = 0 if and only if
A is finite dimensional so the Gelfand Kirillov dimension somehow
measures how much a finitely generated algebra fails to be finite di-
mensional1

• GKdim(k[x1, . . . , xm]) ≤ m. To see this take V = kx1 + . . . kxm then
Vn = 1⊕ V . . . ⊕ V n, hence

dV (n) =
n
∑

i=0

dim(V n) =
n
∑

i=0

(

m+ i− 1

m− 1

)

≤ (n+1) · (m+n)m−1
! nm

(In fact GKdim(k[x1, . . . , xm]) = m as will follow from Proposition
2.2 or Corollary 2.3)

• Any free algebra k ⟨x1, . . . , xm⟩ withm ≥ 2 has infiniteGK−dimension.
(This follows from the second example after Theorem 0.5)

We now give some propositions without proofs:

Proposition 1.4. Let A be any k-algebra If A is a finitely generated commu-
tative ring, then the Gelfand Kirillov dimension equals its Krull dimension
(and hence is a nonnegative integer).

Proof. [2, Theorem 4.5]

1In the more general case GKdim(A) = 0 if and only if A is locally finite dimensional.
I.e. every finitely generated sub-k-algebra is finitely generated
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Proposition 1.5. GKdim(A) ∈ {0} ∪ {1} ∪ [2,∞] and for each of these
numbers there is an algebra having this Gelfand Kirillov dimension.

Proof. GKdim(A) = 0 if and only if A is finite dimensional as a vectorspace
over k. If A is not finite dimensional, then dV (n) < dV (n+1) for all n, hence
dV (n) " n and GKdim(A) ≥ 1. Examples for Gelfand Kirillov dimension 0
and 1 are k and k[x].
The fact thatGKdim(A) > 1 impliesGKdim(A) ≥ 2 is known as Bergman’s
Gap Theorem ([2, Theorem 2.5] or [2, Section 12.2] for a proof using Uf-
narovskii graphs).
As GKdim(A[x]) = GKdim(A) + 1 it suffices to give for any λ ∈]2, 3[ an
algebra Aλ with GKdim(Aλ) = λ. This follows from [2, Theorem 1.8] by
choosing f(x) = (x+ 1)λ (up to some scalar factor).

Quite recently the following result was proven in [3]:

Proposition 1.6. There are no graded domains with GK-dimension strictly
between 2 and 3.
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2 Ore-extensions

Proposition 2.1. Let k be a field, A a k-algebra, σ : A → A a k-algebra
morphism and δ : A → A a k−linear σ−derivation. Then GKdim(A[x,σ, δ]) ≥
GKdim(A) + 1.

Proof. Let V be a finite dimensional generating subspace for A, containing
1. Then V + kx obviously is finite dimensional as well and it is a generating
subspace for A[x,σ, δ].
Moreover for each n ∈ N, i ≤ n: V nxi ⊂ V 2n−ixi, hence we have

V n + V nx+ . . .+ V nxn ⊂ (V + kx)2n

From this inclusion follows (n+ 1)dV (n) ≤ dV+kx(2n) and the inequality is
immediate:

GKdim(A[x,σ, δ]) = lim
n→∞

logn(dV+kx(n))

= lim
n→∞

logn(dV+kx(2n))

≥ lim
n→∞

logn((n+ 1)dV (n))

= lim
n→∞

(

logn(n+ 1) + logn(dV (n))
)

= 1 +GKdim(A)

Proposition 2.2. Equality holds in the above Proposition if A admits a
finite dimensional generating subspace V such that σ(V ) ⊂ V .

Proof. Let V be a finite dimensional generating subspace for A with σ(V ) ⊂

V and 1 ∈ V . Since A =
∞
⋃

n=0

V n there exists an m ≥ 1 such that δ(V ) ⊂ V m

and
δ(V n+1) ⊂ σ(V )δ(V n) + δ(V )V n

It follows by induction on n that δ(V n) ⊂ V m+n. By induction we also show
that

(V + kx)n ⊂ V mn + V mnx+ . . . + V mnxn

This is obvious for n = 0, 1 and for the induction step remark that

V (V + kx)n ⊂ V mn+1 + V mn+1x+ . . . + V mn+1xn

⊂ V m(n+1) + V m(n+1)x+ . . . + V m(n+1)xn

and

x(V + kx)n ⊂ xV mn + . . . + xV mnxn

⊂ σ(V mn)x+ δ(V mn) + . . .+ σ(V mn)xn+1 + δ(V mn)xn

⊂ V mnx+ V mn+m + . . .+ V mnxn+1 + V mn+mxn

⊂ V m(n+1) + V m(n+1)x+ . . . + V m(n+1)xn + V mnxn+1
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Hence dV+kx(n) ≤ (n+ 1)dV (mn) and

GKdim(A[x,σ, δ]) = lim
n→∞

logn(dV+kx(n))

≤ lim
n→∞

logn((n+ 1)dV (mn))

= lim
n→∞

(

logn(n+ 1) + logn(dV (mn))
)

= 1 + lim
n→∞

logn(dV (n))

= 1 +GKdim(A)

Corollary 2.3. Let A =
∞
⊕

n=0

An be a graded k−algebra where V = A0+A1

is a finite dimensional generating subspace, σ a graded A-morphism of degree
zero and δ a σ-derivation. Then GKdim(A[x,σ, δ]) = GKdim(A) + 1.

Examples.

• GKdim(A[x1, . . . , xm]) = GKdim(A) +m, showing that the polyno-
mial ring over k has Gelfand-Kirillov dimension equal to its number
of variables.

• The nth Weyl algebra An has Gelfand Kirillov dimension equal to 2n.

(recall An+1
∼= An[xn+1][yn+1, Id,

∂

∂xn+1
])
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