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Introduction

These notes give a brief description on certain homological properties of modules over a ring,
or more general, in an Abelian category. An object being projective, injective or flat is basically
defined by the behavior of some widely-used homological functors: the Hom-functor and the tensor
product. Similarly, how well one can approximate a given object by projective, injective or flat
objects, will determine the behavior of the derived functors Ext and Tor.

The associated dimensions will try to summarize this information for the complete category of
modules over a ring. Relations between the di↵erent dimensions will translate into relations
between the corresponding functors. These notes briefly summarize some main results of [1],
chapters 3, sections 6.2, 7.1-7.2, and chapter 8.

1 Projective and injective objects

1.1 Exactness of functors

Let A be an Abelian category (you can think of RMod, the category of left R-modules1). Let F
be a (covariant) functor from A to Ab.

Definition 1.1. We call F left exact when F preserves kernels, or equivalently, if for any exact

sequence 0 A B C , the sequence 0 F (A) F (B) F (C) is exact.

We call F right exact when F preserves cokernels, or equivalently, if for any exact sequence

A B C 0 , the sequence F (A) F (B) F (C) 0 is exact.

We call F exact when F is both left and right exact, or equivalently, if F preserves short exact
sequences.

One can similarly define left exact, right exact, and exact for contravariant functors between
Abelian categories. One can verify the following statement:

Proposition 1.2. For any object A in A, the covariant functor HomA(A,�) : A ! Ab and the
contravariant functor HomA(�, A) : A ! Ab are left exact.

The question that follows naturally is: which conditions can be put on A such that (one of) these
becomes an exact functor?

1By the Freyd-Mitchell embedding theorem, any (small) Abelian category can be embedded in RMod as a (full)
subcategory, for some ring R [1, Theorem 5.99].
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1.2 Projective objects

As one would say in Dutch, let’s give the child a name, first focusing on the covariant Hom-functor:

Definition 1.3. We call an object P projective if HomA(P,�) is exact.

There are of course several (fairly trivial) characterizations of this:

Proposition 1.4. Let P be an object in A. Then the following are equivalent:

• P is projective;

• HomA(P,�) is right exact;

• when one has f and g as in the diagram below, there is always an h making the diagram
commute:

P

NM 0

g

f

h

• any short exact sequence ending in P splits.

Example 1.5.

(a) When working in RMod, we have HomR(R,M) ⇠= M by the identification ' 7! '(1), so
HomR(R,�) ⇠= 1RMod

is an exact functor. We conclude that R is projective. More general:
any free module is projective.

(b) One can prove that P1 and P2 are projective if and only if P1 � P2 is projective. Together
with the first example, we find that summands of free modules are projective.2

(c) If R = k is a field, all modules are projective, since they are all free.

When working in RMod, every module is the quotient of a free module, and since free modules are
projective, this means every module is the quotient of a projective module3. In general Abelian
categories, this does not have to be the case.

Definition 1.6. An Abelian category A has enough projectives if for every object A, there is a
projective object P with an epimorphism P ⇣ A.

1.3 Injective objects

As we had projective objects, to indicate exactness of HomA(P,�), we shall now have injective
objects to indicate exactness of HomA(�, E). This concept is dual to projective objects, so we
can repeat our statement mutatis mutandis:

Definition 1.7. We call an object E injective if HomA(�, E) is exact.

Proposition 1.8. Let E be an object in A. Then the following are equivalent:

• E is injective;

• HomA(�, E) is right exact;

• when one has f and g as in the diagram below, there is always an h making the diagram
commute:

2Using for example the final equivalent statement for projective modules, one can also show that every projective
module is a summand of a free module.

3For a (left) Artinian ring R and a finitely generated module M , there is a projective cover, in some sense a
minimal projective module that projects onto M [2, Theorem 4.2].
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• any short exact sequence starting in E splits.

One has a dual property to having enough projectives:

Definition 1.9. An Abelian category A has enough injectives if for every object A, there is an
injective object E with a monomorphism A ,! E.

It was fairly easy to show that RMod has enough projectives. Though the same statement holds
for injectives, it is somewhat more involved to get.

Theorem 1.10. For any ring R and any (left) R-module M , there is an injective R-module E in
which one can embed M as a submodule, i.e. RMod has enough injectives.

Proof. [1, Theorem 3.38]

2 Projective and injective dimension

2.1 Resolutions

Definition 2.1. Let A be an object in an Abelian category A. A projective resolution of A is an
exact sequence

· · · P2 P1 P0 A 0 · · ·

where {Pi}i 2 N are projective. An injective resolution of A is an exact sequence

· · · 0 A E0 E1 E2 · · ·

where {Ei}i 2 N are injective.

One constructs the deleted projective (injective) resolution by removing A from the projective
(injective) resolution.

The existence of these resolutions is not always ensured; though in most ‘nice’ cases, one can find
them.

Proposition 2.2. If A has enough projectives (injectives), every object A has a projective (injec-
tive) resolution.

Proof. Since A has enough projectives, we find a projective P0 which projects onto A. We take
the kernel of this projection, and find P1 that projects onto it. By composing the projection maps
and the kernel maps, we find a projective resolution:

· · · P2 P1 P0 A 0 · · ·

ker p2 ker p1 ker p0

d2 d1 d0 p0

p3 p2 p1

One can make the same argument for an injective resolution, taking cokernels.
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Now we have defined these resolutions, you might ask, what are they good for? Well, the most
basic thing one does with resolutions, is defining left and right derived functors [1, §6.2]. As an
example, this is the procedure to define Ext. Assume we are working in an Abelian category A

with enough injectives. We then define (for n > 0)

ExtnA(A,B) := H�n(HomA(A,EB)) ,

where EB is a deleted injective resolution of B, and H�n is the (�n)-th homology of the complex.
To elaborate, we start by taking a deleted injective resolution4

EB = · · · 0 E0 E1 E2 · · ·

d0 d1 d2

,

applying HomA(A,�) to find

HomA(A,EB) = · · · 0 HomA(A,E0) HomA(A,E1) HomA(A,E2) · · ·

d0
⇤ d1

⇤ d2
⇤

,

and lastly, we take the homology in the position of HomA(A,En), to find

ExtnA(A,B) =
ker dn⇤
im dn�1

⇤
.

Note 2.3. If A has both enough injectives and projectives, one can define ExtnA(A,B) by using a
projective resolution of A as well, and both methods give the same result [1, Theorem 6.67].

2.2 Dimensions

From the definition of the derived functors, one can see that it can be important to see when
a projective or injective resolution becomes 0. In the example, as soon as Ei = 0, we have
ExtiA(A,B) = 0. This illustrates the importance of the length of the resolutions, and justifies the
next two definitions5:

Definition 2.4. The projective dimension of a (left) R-module A is the smallest length of a
projective resolution for A, i.e.

Rpd(A) = inf

⇢
n 2 N

����
9 a projective resolution · · · P1 P0 A 0 · · ·

of A, with 8i > n : Pi = 0

�
.

The injective dimension of a (left) R-module A is the smallest length of an injective resolution for
A, i.e.

Rid(A) = inf

⇢
n 2 N

����
9 an injective resolution · · · 0 A E0 E1 · · ·

of A, with 8i > n : Ei = 0

�
.

A simple observation regarding these matters: A is projective if and only if Rpd(A) = 0, and A
is injective if and only if Rid(A) = 0. Looking into these matters in slightly more detail, one can
prove the following:

Proposition 2.5. Let A be a (left) R-module, then the following equivalences hold:

Rpd(A) 6 n () Extn+1
R (A,�) = 0

() 8k > n+ 1 : ExtkR(A,�) = 0

Rid(A) 6 n () Extn+1
R (�, A) = 0

() 8k > n+ 1 : ExtkR(�, A) = 0

4One can show that the choice of resolution does not change the result of this procedure [1, Prop. 6.20, 6.40].
5From this point, we will work with R-modules. All these notions extend to Abelian categories with enough

projectives (or/and injectives).
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2.3 Global dimensions

So far, we have looked at projective and injective dimensions one module at a time. We can of
course ask the question globally: how long can these resolutions become? The notion we introduce
here, is the global dimension:

Definition 2.6. The left projective global dimension of a ring R is

`pD(R) = sup
�
Rpd(A)

�� A a left R-module
 

.

The left injective global dimension of a ring R is

`iD(R) = sup
�
Rid(A)

�� A a left R-module
 

.

When we look at the characterizations ofRpd andRid, we get the following rather surprising result:

Theorem 2.7. For a ring R, the following equivalences hold:

`pD(R) 6 n

() 8k > n+ 1 8A,B 2 objRMod : ExtkR(A,B) = 0
() `iD(R) 6 n

and thus `pD(R) = `iD(R).

So our double definition actually give the same thing, which we will now call the left global
dimension of R.

Definition 2.8. The left global dimension of a ring R is `D(R) = `pD(R) = `iD(R).

We now did everything for left R-modules. One could do the same for right R-modules, defining
pdR and idR, and find the right global dimension rD(R). In general, these two global dimensions
can be di↵erent.

Theorem 2.9. If R is left and right Noetherian, `D(R) = rD(R).

Example 2.10. If R = k is a field, all modules are projective, so `D(R) = 0.

3 Flat dimension

3.1 Tensor product and Tor

Another basic functor in the category of R-modules, is the tensor product. As a reminder, this is
the definition:

Definition 3.1. Let A be a right R-module and B a left R-module. The tensor product is an
Abelian group A⌦R B and a R-biadditive6 map h : A⇥B ! A⌦R B, which is universal with this
property.

The universal property here means that for any other group G with a R-biadditive map f coming
from A ⇥ B, there is a unique map f̃ such that f = h � f̃ . It implies that the tensor product is
unique. If we denote h(a, b) := a⌦ b, one can prove that the tensor product is generated by these
so-called simple tensors. Furthermore, if one takes the group represented by ‘simple tensors’, with
the relations as given by R-biadditivity, one can prove that this is in fact the tensor product of A
and B.

If we now fix B and let A vary, we get a map �⌦R B : ModR ! Ab, which is in fact a functor.
If f : A ! A0 is a right R-homomorphism, we can define f ⌦RB as f ⌦1B : a⌦ b 7! f(a)⌦ b. One
can ask about exactness of this functor and, similar to the Hom-functor, the ⌦-functor is always
exact on one side. Proofs of the stated properties can be found in [1, §2.2].

6R-biadditive means: additive in both arguments, and h(ar, b) = h(a, rb).
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Proposition 3.2. For any left R-module B, the (covariant) functor �⌦R B is right exact.

To deal with the question of left exactness of the tensor product, one looks at the left derived
functor of �⌦R B, which is called Tor. This left derived functor is defined (for n > 0) as

TorRn (A,B) := Hn(PA ⌦R B) ,

where PA is a deleted projective resolution of A. Similar to Ext, this procedure doesn’t depend
on the choice of projective resolution [1, Proposition 6.20]. One could have looked at the similar
functor A ⌦R �, and taken the left derived functor. Both procedures give the same result for
TorRn (A,B) [1, Theorem 6.32].

3.2 Flat modules

Again, one names the special modules, for which the tensor becomes exact.

Definition 3.3. We call a (left) R-module F flat if �⌦R F is exact.

There are some equivalent characterizations of flatness:

Proposition 3.4. Let F be a (left) R-module. Then the following are equivalent:

• F is flat;

• �⌦R F is left exact;

• whenever i : A ! A0 is injective, so is i⌦ 1F : A⌦R F ! A0
⌦R F .

Example 3.5.

(a) Since A⌦R R ⇠= A, we have �⌦R R ⇠= 1
ModR , so R is flat.

(b) A direct sum of left R-modules is flat if and only if every summand is flat, essentially because
the tensor product commutes with direct sums.

(c) The two previous examples prove that every summand of a free module is flat. Since these
are exactly the projective modules, we get that all projective modules are flat (though not
all flat modules are necessarily projective).

3.3 Flat resolutions

As in the case of projective and injective objects, we can now try to ‘approximate’ any module
using flat modules.

Definition 3.6. Let A be a left R-module. A free resolution of A is an exact sequence

· · · F2 F1 F0 A 0 · · ·

where {Fi}i 2 N are free.

One constructs the deleted free resolution by removing A from the sequence.

Luckily, since projective resolutions exist in RMod, and projective modules are flat, the existence
of free resolutions is guaranteed!

One could already suspect that these free resolutions will be relevant for the calculation of Tor.
Although we defined Tor as a left derived functor, using projective resolutions, one could in fact
use flat resolutions instead:

Theorem 3.7. Let FB be a deleted flat resolution of a left R-module B, and FA a deleted flat
resolution of a right R-module A. Then for all n > 0

TorRn (A,B) = Hn(FA ⌦R B) = Hn(A⌦R FB) .

Proof. [1, Theorem 7.5]
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3.4 Flat dimension

The previous theorem tells us that flat resolutions relate to Tor as projective and injective resolu-
tions relate to Ext. In particular, the length of flat resolutions gives us information on when Tor
will be guaranteed to become zero. This leads to the introduction of a new dimension for modules:

Definition 3.8. The flat dimension of a (left) R-module B is the smallest length of a flat resolution
for B, i.e.

Rfd(B) = inf

⇢
n 2 N

����
9 a flat resolution · · · F1 F0 B 0 · · ·

of A, with 8i > n : Fi = 0

�
.

Similar to the projective and injective dimension, one gets: B is flat if and only ifRfd(B) = 0. A
more rigorous analysis of the situation gives the following:

Proposition 3.9. Let B be a left R-module, then the following equivalences hold:

Rfd(B) 6 n () TorRn+1(�, B) = 0

() 8k > n+ 1 : TorRk (�, B) = 0

Lastly, since projective modules are flat, any projective resolution is a flat resolution, so

Proposition 3.10. For any left R-module B, Rfd(B) 6Rpd(B).

3.5 Weak dimension

Similarly to the global dimension, we can combine all flat dimensions into one dimension, depend-
ing on the ring:

Definition 3.11. The left weak dimension of a ring R is

`wD(R) = sup
�
Rfd(B)

�� B a left R-module
 

.

At this point, we have looked at left R-modules B, and the corresponding functors � ⌦R B and
TorRn (�, B) for n > 0. Looking similarly to right R-modules A, A⌦R � and TorRn (A,�) for n > 0,
we can define fdR(A) and the following:

Definition 3.12. The right weak dimension of a ring R is

rwD(R) = sup {fdR(A) | A a right R-module} .

We would get a similar statement to Proposition 3.9, and putting those together, we get

Theorem 3.13. For a ring R, the following equivalences hold:

`wD(R) 6 n

() 8k > n+ 1 8A 2 objModR 8B 2 objRMod : TorRk (A,B) = 0
() rwD(R) 6 n

and thus `wD(R) = rwD(R).

Similar to the global dimension, we can reduce our two dimensions to one:

Definition 3.14. The weak dimension of a ring R is wD(R) = `wD(R) = rwD(R).
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4 Connections and properties

4.1 Finding dimensions

In a few cases, one can find the dimensions faster, if one has some more information on the ring.
The following statement says that it’s su�cient to only look at quotients of the ring itself:

Theorem 4.1. If R is a ring, we have

`D(R) = sup
�
Rpd(R/I) | I a left ideal

 
;

wD(R) = sup
�
Rfd(R/I) | I a left ideal

 
.

Secondly, if one adds an indeterminate to a ring, the global dimension increases by one:

Theorem 4.2 (Hilbert’s Syzygy Theorem). If R is a ring, we have

`D(R[x1, . . . , xn]) = `D(R) + n .

In particular, if k is a field, `D(k[x1, . . . , xn]) = n.

Proofs of these properties can be found in [1, §8.1-8.2].

4.2 Weak versus global dimension

Due to projective modules being flat, we already observed that Rfd(A) 6 Rpd(A), in general.
Ranging over all modules A, this gives the following property:

Proposition 4.3. For any ring R, we have wD(R) 6 min(`D(R), rD(R)).

When we combine the alternative characterizations of weak and global dimension, in terms of Ext
and Tor, this gives the following:

Corollary 4.4. If ExtkR(A,B) = 0 for all left (or all right) R-modules A, B, then TorRk (C,D) = 0
for all right R-modules C and all left R-modules D.

In a few specific cases, we have equality in the above proposition:

Proposition 4.5. If R is left Noetherian, wD(R) = `D(R).

It will not surprise you that the dual statement also holds, if R is right Noetherian, wD(R) =
rD(R). Together, these give

Corollary 4.6. If R is left and right Noetherian, rD(R) = wD(R) = `D(R).

Proofs of these properties can be found in [1, §8.1].

4.3 Commutative Noetherian local rings

In the specific case where R is commutative and Noetherian, we already have a somewhat more
special property (not forgetting that in this case `D(R) = rD(R)).

Theorem 4.7. If R is a commutative Noetherian ring, we have

`D(R) = sup{`D(Rm) | m a maximal ideal} .

When we add the requirement that R is local, this supremum is running over a single maximal
ideal, so `D(R) = `D(Rm), and furthermore, one can look at the residue field:
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Theorem 4.8. If R is a commutative Noetherian local ring with residue field k, we have

`D(R) =Rpd(k) .

We can also compare the global dimension to the Krull dimension7 dim(R). When the ring is
‘nice’, these two are equal:

Theorem 4.9. Let R be a commutative Noetherian local ring. Then R is regular8 if and only if
`D(R) is finite, and in that case `D(R) = dim(R).

Proofs of these properties can be found in [1, §8.4].
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