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Abstract

These are the notes for my first lecture on Grothendieck duality in the
ANAGRAMS seminar. They discuss the Riemann–Roch theorem and Serre duality.
A nice proof of Riemann–Roch is discussed. The applications of Riemann–Roch
and Serre duality are given in the second lecture.
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1 Riemann–Roch

1.1 History

The Riemann–Roch theorem has already celebrated, or will almost celebrate its
150th birthday. In 1857 Bernhard Riemann proved Riemann’s inequality (what this
means will become clear later on) [5], while his student Gustav Roch found the
missing term in 1865 [6], in order to make it an equality. Originally it was a theorem
for Riemann surfaces, firmly rooted in complex analysis, and what is dubbed “the
classical language” of divisors. With the advent of algebraic geometry the quest for
an analogous statement began, and in 1931 Friedrich Karl Schmidt proved it for
algebraic curves over perfect fields [7].
One can also look for Riemann–Roch-like statements for higher-dimensional, or
singular objects. A version for smooth surfaces was proved by Guido Castelnuovo
in 1896 (building on work of Max Noether from 1886 and Federigo Enriques1 in
1894).
With the advent of sheaf theory and its use in algebraic geometry, Friedrich Hirze-
bruch proved in 1954 a version of Riemann–Roch (now oten dubbed Hirzebruch–
Riemann–Roch) for compact complex manifolds of arbitrary dimensions. And in
1957 Alexander Grothendieck proved a far-reaching generalisation in the language
of modern algebraic geometry: it is a relative statement, which has the previous
results as a “trivial” case. This version is known as Grothendieck–Riemann–Roch, or
its abbreviation GRR.
But in this seminar we will highlight a different route of generalisations. Whereas the
previous generalisations were about proving certain numbers related to topological
information to be equal, one can also consider the intrinsic geometric structure of
objects, and look for relationships between associated structures. This is the result of
Serre duality, obtained by Jean–Pierre Serre in 1955 [8]. It relates sheaf cohomology
groups on non-singular projective algebraic varieties. It is related via Hodge theory
to the maybe more familiar Poincaré duality if the base field is the complex numbers,
but it considers the variety as a complex variety, not as a real manifold. One can
obtain Riemann–Roch-like results this way, because it effectively reduces the amount
of “abstract” cohomological information.
The final goal of this seminar is Grothendieck duality. This is a relative version
of Serre duality, with a first proof by Robin Hartshorne in 1966 [3]. This proof is
based on notes by Alexander Grothendieck, who envisioned the result in 1957 [1],
but at the time the language required for the statement wasn’t available. With the
conception of derived categories [12], due to Jean–Louis Verdier2 the generalisation
become feasible.
It is still an area of active research, with many relations to other results. In the
past 2 decades it has seen interesting new proofs and generalisations. As far as I
understand one can obtain the results in the other branch of generalisations (i.e.
the Hirzebruch–Riemann–Roch and Grothendieck–Riemann–Roch type of results),
but this now requires a difficult argument based on the Lefschetz–Verdier formula
[SGA5, exposé III].

1Who apparently studied at the University of Liège.
2Its precise date is hard to pin down, he defended his PhD in 1967 but derived categories had been

used for a few years by then.
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The goal of this seminar series is to first discuss the classical results of Riemann–
Roch and Serre duality. Then we go on to discuss some applications of these results,
and start working towards Grothendieck duality in the second lecture. In the third
lecture we will discuss Hartshorne’s proof [3], while the fourth seminar is dedicated
to a more modern proof by Daniel Murfet from 2007 [4].

1.2 Preliminaries

From now on I will use Ravi Vakil’s notes on Riemann–Roch and Serre duality [10].
You can also take a look at [11] for a broader picture.
We first need to figure out what H0 and H1 are, in as concrete terms as possible. From
now on we take C a nonsingular projective algebraic curve over an algebraically
closed field k.

Global sections

Definition 1. Let F be a sheaf on C . Then H0(C ,F) are the global sections of F
over C .

Example 2. Let C = P1
k. Then the global sections of OP1

k
on P1

k are the constant
functions, i.e.

(1) H0(P1
k,OP1

k
) = k.

To see this, observe that P1
k is a gluing of two A1

k ’s. The regular functions on one
part A1

k = Spec k[x] are the polynomials. But if we take a polynomial f (x), the
gluing procedure tells us that f (1/x) should be a polynomial on the other A1

k, which
is only possible if it is a constant. This is an algebraic analogue of Liouville’s theorem
in complex analysis.

We observe that the global sections have the structure of a k-vectorspace. This is the
case for all OC -modules. In this case we define

(2) h0(C ,F) := dimk H0(C ,F).

H1 of a sheaf

Definition 3. Let F be an OC -module. Let U= {U1, . . . , Un} be an open cover of C .
Denote Ui, j = Ui∩U j and Ui, j,k = Ui∩U j∩Uk. Then H1(C ,F) as a set consists of those
tuples ( fi, j)i, j where fi, j ∈ H0(Ui, j ,F) such that fi, j − f j,k + fi,k = 0 in H0(Ui, j,k,F).
We will call these cocycles.
We consider H1(C ,F) as an abelian group by declaring a tuple ( fi, j)i, j zero if there
are sections gi ∈ H0(Ui ,F) such that fi, j = gi−g j in H0(Ui, j ,F). And we get H1(C ,F)
as a k-vectorspace by the k-vectorspace structure on H0(C ,F).

The definition of the zero in this vectorspace explains what H1 is about: it measures
to which extent we cannot glue global sections.
Of course, this was for a fixed covering. There is a partial order on coverings, and if
we have a cocycle on U, with U≤V, then by restricting it we get a cocycle on the
finer covering V. So to be strict we have to take the direct limit over these coverings.
To get some more background, see [2, exercises III.4.4 and III.4.11].
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Example 4. Let G be an abelian group, and denote G the associated constant sheaf
on C . Then H1(C , G) = 0, as there are no obstructions whatsoever to glue sections.

Example 5. Take p ∈ C and define a skyscraper sheaf kp on C by

(3) Γ(U , kp) =

¨

k p ∈ U
0 p /∈ U

for U ⊆ C open, which is an OC -module by the obvious multiplication. As in the
previous case we get H1(C , kp) = 0.

These are both examples of flasque sheaves, and these never have higher cohomology.

The Euler characteristic Again the cohomology groups have a k-vectorspace
structure, which allows us to define

(4) h1(C ,F) := dimk H1(C ,F)

and in general we will set

(5) hi(C ,F) := dimk Hi(C ,F).

By a nice result of Grothendieck we know that sheaf cohomology vanishes above
the dimension of the variety [2, theorem III.2.7]. Hence in the case of a curve there
is only a H0 and a H1. We then define the Euler characteristic

(6) χ(C ,F) := h0(C ,F)− h1(C ,F).

In general this will be an alternating sum over more terms, up to the dimension of
the variety. We will use this definition later on, the philosophy of “taking together
all the cohomology groups” proves to be very fruitful.

A short exact sequence of sheaves Take p ∈ C . Then OC(−p) is the sheaf of
regular functions with a zero in p. Then we have a short exact sequence

(7) 0→ OC(−p)→ OC → kp → 0

where the first morphism is the obvious inclusion, and the second morphism is
taking the value at p. Moreover, for any invertible sheaf L we have a short exact
sequence

(8) 0→ L(−p)→ L→ kp → 0

by taking the sections of L which vanish at p.
The associated long exact sequence in cohomology yields

(9) 0→ H0(C ,L(−p))→ H0(C ,L)→ H0(C , kp)→ H1(C ,L(−p))→ H1(C ,L)→ 0

hence the Euler characteristic is additive:

(10) χ(C ,L(−p)) = χ(C ,L)−χ(C , kp) = χ(C ,L)− 1.

This will be used in the proof of (cheap) Riemann–Roch, see lemma 8.
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1.3 Statement: curves

We can now give a first version of the Riemann–Roch theorem. The statement
requires the canonical sheaf Ω1

C , or line bundle of differentials, which will be
introduced later.
The line bundle of differentials on a curve is the source of an important invariant of
the topology of the curve.

Definition 6. The genus of a curve is gC := dimk H0(C ,Ω1
C).

Theorem 7 (Riemann–Roch). Let L be an invertible sheaf of degree d on C . Let g
be the genus of C Then

(11) h0(C ,L)− h0(C ,Ω1
C ⊗L∨) = d − g + 1,

where L∨ is the dual of L, given by Hom(L,OC).

Hence Riemann–Roch is a relationship between some numbers: if we know all but
one of them we know all of them. The number we care most about is h0(C ,L). When
we take L = OC(D) we are interested in the dimension of the space of functions
with “prescribed behaviour at D”: we require the poles to be no worse than what
is allowed by D. As for most points the coefficient of p ∈ C will be zero, a section
of OC(D) has (possibly) some poles in the points of D and (possibly) zeroes of at
least a certain order.
As hinted at in the introduction, we consider the second term of the left-hand side
as a “correction term”. So in general we get

(12) h0(C ,L)≥ d − g + 1

which is called Riemann’s equality, and an important question is whether we have
equality in certain cases.
The following is dubbed “cheap Riemann–Roch” by Ravi Vakil: it is a first step in
proving Riemann–Roch and Serre duality for curves. Because it uses both H0 and H1

it is “cheap”: H1 is hard to understand. But it shows that

1. Riemann–Roch is about giving a numerical relationship: if D and D′ are
divisors such that deg(D) = deg(D′) they behave similarly;

2. one should consider all the sheaf cohomology groups together: the Euler
characteristic is well-behaved, separate dimensions are not.

Lemma 8 (Cheap Riemann–Roch). We have

(13) χ(C ,L) = deg(L) +χ(C ,OC),

hence for L= OC(D) we get

(14) χ(C ,OC(D)) = h0(C ,OC(D))− h1(C ,OC(D)) = d + 1− h1(C ,OC).

Proof. The invertible sheaf L can always be written as OC (p1+. . .+pa−q1−. . .−qb)
for pi and q j points on C , because in this case the Picard group (the group of
invertible sheaves) is isomorphic to the group of Cartier divisors (which agree with
Weil divisors, the most down-to-earth version we use here). We get a− b = deg(L).
Then we can set up an induction on the number of points a+ b: for OC it is obvious,
and adding a point uses the additivity of the Euler characteristic on short exact
sequences.
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1.4 Statement: surfaces

Theorem 9 (Riemann–Roch for surfaces). Let L be an invertible sheaf on a smooth
projective algebraic surface S. Then

(15)

χ(S,L) = h0(S,L)− h1(S,L) + h2(S,L)

= χ(S,OS) +
1

2
(L2 −L ·ωS)

= h0(S,OS)− h1(S,OS) + h2(S,OS) +
1

2
(L2 −L ·ωS)

where we take the intersection numbers of the divisors associated to L and ωS .
Moreover we have Noether’s formula

(16) χ(S,OS) =
ωS ·ωS +χtop(S)

12

and if C is a curve on S we have the genus formula

(17) 2pa(C)− 2= C2 + C · KX .

Again this is a (or rather, its different manifestations are) numerical relation(s) on
numbers associated to the surface and an invertible sheaf (or divisor) on it. We have
a H2 popping up, which we don’t understand at the moment. But once we’ve seen
Serre duality we will know how to reduce this H2 to a H0. Then we get a formula
containing H0 and H1.
This H1-term wasn’t known at first (we are now in the era of the Italian school)
and hence we only had an inequality. The failure of this equality was called the
superabundance. In the second lecture we will discuss some other interesting facts
about this.

2 Serre duality

2.1 Statement

In the statement of Riemann–Roch we used the canonical sheaf ωX (or Ω1
C for

curves, as they agree in dimension one), which made the magic work. In the more
general setting that we will enter now (possible singularities) we will need a more
general object serving the role of the canonical sheaf. We will define its properties,
and then we are left with an existence question. This exposition is taken from [2,
§III.7], in later seminars we will give more general statements and come back to
this setup.

Definition 10. Let X/k be a proper n-dimensional variety. A dualising sheaf for X is
a coherent sheaf ω◦X together with a trace morphism tr: Hn(X ,ω◦X )→ k, such that
for all F ∈ Coh/X the natural pairing

(18) Hom(F,ω◦X )×Hn(X ,F)→ Hn(X ,ω◦X )

composed with tr gives an isomorphism

(19) Hom(F,ω◦X )
∼= Hn(X ,F)∨.
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So the first part of duality theory concerns the existence of this dualising sheaf. A
sufficient condition is that X is projective [2, proposition III.7.5]. In later seminars
more general existence conditions will be discussed. One can prove that such a
dualising sheaf and trace morphism are unique if they exist [2, proposition III.7.2].
Example 11. The most trivial case one can image is X = Spec k a point. Then coher-
ent sheaves are finite-dimensional vectorspaces, and ω◦X = k. The isomorphism tr is
then the definition of the dual vectorspace.

The next part concerns the actual duality. We state [2, proposition III.7.6].
Theorem 12 (Serre duality). Let X/k be a projective n-dimensional variety. Let ω◦X
be its dualising sheaf. Then for all i ≥ 0 and F ∈ Coh/X we have functorial maps

(20) θ i : Exti(F,ω◦X )→ Hn−i(X ,F)∨

such that θ 0 corresponds to tr. Moreover, if X is Cohen–Macaulay3 the θ i are
isomorphisms for all i ≥ 0 and F ∈ Coh/X .

The following corollary illustrates nicely why Serre duality is truly a duality result:
it gives a relationship between Hi and Hn−i .

Corollary 13. Let X be projective Cohen–Macaulay of (equi-)dimension n over k.
Let F be a locally free sheaf on X . Then we have isomorphisms

(21) Hi(X ,F)∼= Hn−i(X ,F∨ ⊗ω◦X )
∨.

2.2 Proof of the curve case

A version of Serre duality for curves states the following.

Theorem 14. There is a natural perfect pairing

(22) H0(C ,Ω1
C(−D))×H1(C ,OC(D))→ k.

If we assume this theorem for now, the proof of the Riemann–Roch theorem becomes
an easy corollary.

Proof of Riemann–Roch using Serre duality. We have that

(23)

h0(C ,L)− h0(C ,Ω1 ⊗L∨)

= h0(C ,L)− h1(C ,L) Serre duality

= χ(C ,L) definition of χ

= d +χ(C ,OC) cheap Riemann–Roch

= d + h0(C ,OC)− h1(C ,OC) definition of χ

= d + 1− h1(C ,OC) global sections are constants

= d + 1− h0(C ,Ω1
C) Serre duality

= d + 1− g definition of g.

3A technical condition that says that “mild singularities” are allowed. It means that each local ring has
Krull dimension equal to the depth (we always have that depth is bounded above by Krull dimension),
where depth corresponds to the length of a maximal regular sequence for the local ring itself. One can
just read non-singular, which is the case we will need in later applications.
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The rest of this section is dedicated to the proof of Serre duality in the curve case. It
is taken from Vakil’s notes, which are based on [9, §2] and originate from a proof
by Weil. The original text of Serre is (as usual) beautiful, and definitely deserves a
reading. It’s hard to believe it was written in the fifties.

Adèles When I was preparing these notes this part scared me, because “adèle” is
a scary word used by people who know something about class field theory4. I am
not one of them. The approach of the proof of Riemann–Roch taken by Vakil, Serre
and Weil is by considering “pre-adèles” or repartitions. This avoids the technical
machinery of class field theory (it would be insane to use it to prove something
as down-to-earth as Riemann–Roch) and has a nice interpretation in terms of the
geometry. By preparing these notes I finally got myself familiar with adèles, so I
hope other people will benefit too from advertising this approach.
Before we start by building things from the ground up, remark that the occurence of
techniques from class field theory is not too far-fetched. It deals with fields, there is
a bijection between curves and their function fields [2, §I.6], and the ring of adèles
of the function field of a curve satisfies self-duality which is one of the results in
Tate’s thesis. This self-duality implies Riemann–Roch, and we will develop as much
of class field theory as required for the proof. So let’s get started.

The part on I(D) To stick to Serre’s notation we will denote

(24) I(D) := H1(C ,OC(D)).

The dimension of this vectorspace pops up in the statement of cheap Riemann–Roch,
and we decided that h1 is not an easy invariant. Hence we would like to get a better
understanding.

Definition 15. A repartition is an indexed set ( fp)p∈C with fp ∈ k(C) for all p ∈ C
such that fp ∈ OC ,p for all but finitely many points p. The set R of repartitions comes
equipped with a ring structure (pointwise addition and multiplication), with k(C)
being a subring of this (if f ∈ k(C) we take fp = f , which is regular at all but finitely
many points of C), and R being a k(C)-algebra.

Hence a repartition is a collection of rational functions, indexed by the points of the
curve, such that at most finitely many rational functions have a pole in the point at
which they are associated. This ring contains tons of potential information (recall
that H1 was about gluing local sections to a global section, and the obstructions in
doing so), and we wish to put it to good use.

Definition 16. Let D be a divisor on C . We set

(25) R(D) := {( fp)p∈C | vp( fp) + vp(D)≥ 0},

an additive subgroup of R.

This is analogous to OC (D), but taken for each point separately. Recall that OC(D) is
the sheaf of meromorphic functions on C with prescribed behaviour in D: if np is
the coefficient of the point p in D, then we require at most a pole of order np is np

is positive, or at least a zero of order np if np is negative5.

We can now interpret H1 in terms of these objects.
4It is also the street in which the math department of Université Paris-Sud is located.
5Sometimes the other convention is used. . .

8



Proposition 17. We have

(26) I(D) = H1(C ,OC(D))∼= R/(R(D) + k(C)).

Proof. Associated to the field k(C) we have the constant sheaf k(C) on C . We have
a natural injection of OC(D) into this constant sheaf, and we define S to be the
cokernel of this injection, i.e. we have the short exact sequence

(27) 0→ OC(D)→ k(C)→ S→ 0.

Taking global sections we get

(28) . . .→ k(C)→ H0(C , S)→ H1(C ,OC(D))→ H1(C , k(C)) = 0

because constant sheaves don’t have higher cohomology groups. Hence we have to
prove that

(29) H0(C , S)∼= R/R(D).

To prove this, we have to interpret S as the quotient sheaf of k(C), which we do by
looking at its stalks. If p is a point of C , we have

(30) Sp = (k(C)/OC(D))p = { f ∈ k(C) | vp( f )≥−vp(D)}.

Hence

(31) R/R(D) =
⊕

p∈C

Sp,

the quotient is a sum of skyscraper sheaves, i.e. a again a skyscraper sheaf.
We wish to show that S equals this same direct sum of skyscraper sheaves, i.e. that
sections of S consist of a selection of values of Sp for all p, almost all of which are
zero. Elements of the stalk are represented by giving an open neighbourhood of the
point and a section on this neighbourhood, and sections that are equal on some
smaller neighbourhood are identified.
So let p be a point of C , and let s ∈ S(U) be a section defined on an open neighbour-
hood U of p. We wish to show that it is a section of the sum of skyscraper sheaves.
To do so we look for a (smaller) neighbourhood U ′ ⊆ U of p such that s|U ′\{p} = 0,
because then s belongs to the skyscraper sheaf associated to p.
It suffices to take this smaller neighbourhood disjoint from

• supp(D) \ {p} (i.e. we ignore the points of the divisor, except potentially p
because we are interested in this point),

• s−1(∞) \ {p} (i.e. away from the poles of s, except for p of course because we
wish to include the point in our neighbourhood).

In order to use this setup: take s an element of the stalk Sp. It has a lift in some
neighbourhood to a section s′ of the constant sheaf k(C) (because S is defined as a
quotient sheaf). On the U ′ (relative to the neighbourhood of p we used to obtain
the lift) everything is regular, so we can choose a section of OC(D) that cancels
what is going on for s′ on U ′ and in the quotient for the stalk it becomes zero when
restricted to U ′ \ {p}.
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The part on J(D) and J We now set

(32) J(D) := I(D)∨ = (R/(R(D) + k(C)))∨.

Hence an element of J(D) is a k-linear form on R (our huge ring of reparti-
tions) which vanishes on R(D) and k(C). Because D ≤ D′ implies R(D) ⊆ R(D′),
hence J(D′)⊆ J(D) we can define

(33) J :=
⋃

D

J(D).

Lemma 18. J is a k(C)-vectorspace.

Proof. Take f ∈ k(C) and α ∈ J . We consider

(34) f α: R→ k : r 7→ 〈α, f r〉

which is a linear functional on R, which vanishes on k(C). This assignment gives J
the structure of a k(C)-vectorspace: take α ∈ J(D) and ( f ) = D′. Then the lin-
ear form f α vanishes on R(D − D′), because if r ∈ R(D − D′) then f r ∈ R(D),
hence 〈α, f r〉= 0. So f α belongs to J(D− D′), and therefore to J .

Moreover, whereas it is a horribly big k-vectorspace, it is well-behaved as a k(C)-vec-
torspace.

Lemma 19. We have dimk(C) J ≤ 1.

Proof. Take α,β linearly independent over k(C). We can find a divisor D such
that α,β ∈ J(D), and denote d = deg(D).
Assume that Dn is any divisor such that deg(Dn) = n. Then for each section
f , g ∈ H0(C ,OC(Dn)) we get that f α ∈ J(D− Dn) by the previous argument, and
similarly gβ ∈ J(D− Dn). Because α and β are linearly independent we know that

(35)
H0(C ,OC(Dn))⊕H0(C ,OC(Dn))→ J(D− Dn)

( f , g) 7→ f α+ gβ

is an injection, hence

(36) dimk J(D− Dn)≥ 2 h0(C ,OC(Dn)).

On the left-hand side we have

(37)

dimk J(D− Dn)
= dimk I(D− Dn) definition

= h1(C ,OC(D− Dn)) proposition 17

= h0(C ,OC(D− Dn))− (d − n) + constant cheap Riemann–Roch

= n+ constant′ n� 0.

In this case, constant means independent of n or Dn.
On the right-hand side we get by cheap Riemann–Roch (lemma 8) that

(38) 2 h0(C ,OC(Dn))≥ 2 deg(Dn) + constant′′

so if n� 0 we get a contradiction as two sides cannot be equal. This dimension
count over k proves that α and β cannot be linearly independent, which proves
that dimk(C) J ≤ 1.
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The part on differentials We will need to know what differentials on a curve are.
In courses on differential geometry or complex analysis one has seen these before.
In the algebraic geometry case one uses Kähler differentials to have a nice analogue.
It provides another natural sheaf, besides the structure sheaf (and its twists). On a
curve it will be an invertible sheaf, denoted Ω1

C and it has an associated canonical
divisor KC .
Another piece of notation that we will use is the set of meromorphic differentials M ,
which is a one-dimensional k(C)-vectorspace as these are exactly the objects that
(locally) look like f (z)dz, with f ∈ k(C). As this is a one-dimensional vectorspace,
we just take the divisor associated to any meromorphic differential, and this will be
the canonical divisor introduced before.
We can now consider some differential forms (both meromorphic and holomorphic)
on a curve. The terminology is mildly inspired by complex geometry here.

Example 20. Take C = P1
k. Then we have a differential form ω = dz on A1

k, and
as the transition map to the second chart is z 7→ z−1 we get that d(z−1) =−z−2dz,
hence this differential form has a pole of order two at∞. Its associated canonical
divisor is −2∞. There are no holomorphic differentials on Pk

1, its genus is zero.

Example 21. Take C = C/Λ a complex elliptic curve, defined by taking a quotient
by a torus. There is a differential form ω = dz on C, which induces a differential
form on C . But as it is everywhere holomorphic it has no poles (nor zeroes), and
the canonical divisor is zero. Hence the only holomorphic differential forms are the
constants, and its genus is one.

For every point p ∈ C there is a residue map

(39) resp : M → k,

analogous to the case of complex analysis. To define this map we can write a
meromorphic differential locally around p as

(40) (a−n/tn + . . .+ a−1/t)dt + regular part

where t is a uniformising parameter, and set the residue equal to a−1. It requires
some work to prove that this is independent of the choice of local parameter
(especially in the case of positive characteristic) [9]6.
We moreover have the residue theorem, which says that for a meromorphic differen-
tial ω ∈ M we have

(41)
∑

p∈C

resp(ω) = 0.

The complex analytic case can be done by Stokes’ theorem, for the general case we
refer to [9].

The setup for the final part of the proof We wish to show that two vectorspaces
are dual to eachother, and we will explicitly construct a linear functional for this. To

6As suggested in Ravi Vakil’s notes, if one assumes the complex analytic case, there is a nice proof
for the general case, as suggested by Kiran Kedlaya. Uniformising parameters t and u are related
by t = u+
∑+∞

k=2 ckuk , so if
∑−1

i=−n ai t
idt and
∑−1

i=−n biu
idu are two local expressions, we get a polynomial

identity in the ai ’s and bi ’s whose coefficients are integers. But over C we have an equality, hence the
polynomial identity reduces to an identity over every field.

11



do so, take ω ∈ M a meromorphic differential on C . We define the divisor

(42) (ω) :=
∑

p∈C

vp(ω)p

hence the sheaf Ω1(−D) is the sheaf of differentials such that (ω)≤ D.
Then we define the pairing

(43) 〈−,−〉: M × R→ k : (ω, r) 7→ 〈ω, r〉=
∑

p∈C

resp(rpω).

It has the following properties.

Lemma 22. The pairing 〈−,−〉 satisfies

1. 〈ω, r〉= 0 if r ∈ k(C);

2. 〈ω, r〉= 0 if r ∈ R(D) and ω ∈ H0(C ,Ω1
C(−D));

3. 〈 fω, r〉= 〈ω, f r〉 if f ∈ k(C).

Proof. 1. This is the residue theorem.

2. The product rpω cannot have a pole, for any p ∈ C , because the zeroes must
at least cancel the poles by the assumptions on r and ω.

3. Both pairings evaluate to a sum of residues over fωr.

For each meromorphic differential ω in H0(C ,Ω1
C(−D)) we have a linear func-

tional θ(ω) on R, and by items 1 and 2 of lemma 22 it is also a linear functional
on R/(R(D) + k(C)). Hence we get a map

(44) θ : H0(C ,Ω1
C(−D))→ J(D)

as J(D) is shorthand for the dual of R/(R(D) + k(C)) by proposition 17. This θ
is moreover defined as a map M → J in general. But we have the following nice
property, that relates the more general map to the specific map.

Lemma 23. Let ω be a meromorphic differential such that θ(ω) ∈ J(D). Then we
have that ω ∈ H0(C ,Ω1

C(−D))7.

Proof. Assume on the contrary that ω /∈ Ω1(−D). This means that there is a
point p ∈ C such that ω has a pole in p that is bigger than allowed by D, or
symbolically

(45) vp(ω)< vp(−D).

Then we take a repartition r ∈ R(D) by setting

(46) rq =

¨

0 q 6= p
1/tvp(ω)+1 q = p.

7Remark that Serre denotes this sheaf Ω1
C (D), because for differentials he reverses the terminology.
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Because

(47) vp(rpω) =−1

we get

(48) 〈ω, r〉=
∑

q∈C

res(rqω) = res(rpω) 6= 0.

But this means θ (ω) is not zero on R(D), but this is required by the definition of θ ,
hence we obtain a contradiction.

Recall that we wish to prove that θ induces an isomorphism from H0(C ,Ω1
C(−D))

to H1(C ,OC(D))∨, and this last object is also denoted J(D).

Proof of Serre duality for curves. To see that θ is injective, take ω ∈ H0(C ,Ω1
C(−D))

such that θ(ω) = 0. Then by lemma 23 we have that ω ∈ Ω1
C(−D′) for every

divisor D′, which implies ω= 0, as all possible configurations of poles and zeroes
should be valid at the same time.
To see that θ is surjective, observe that by item 3 of lemma 22 we have that θ
is k(C)-linear, from M to J . By definition we have dimk(C)M = 1, by lemma 19 we
have dimk(C) J ≤ 1. An injection of finite-dimensional vectorspaces into a smaller
vectorspace is necessarily surjective.
Hence if α is an element of J(D) we get a meromorphic differential ω such
that θ(ω)α, and lemma 23 shows that ω ∈ Ω(−D).

2.3 The general case

The proof for curves has an explicit flavour in terms of residues to it. In higher
dimensions we lose this. For a nice (but abstract) proof one can take a look at [2,
§III.7]. The proof goes as follows, for X ⊆ Pn

k:

1. Prove Serre duality for Pn
k, which is very concrete (see later). The dualizing

sheaf ωPn
k
=
∧nΩPn

k/k
is OPn

k
(−n− 1).

2. Prove that ω◦X = Extr
Pn

k
(OX ,ωPn

k
) is a dualising sheaf for X , where r is the

codimension of X . Remark that Exti
Pn

k
(OX ,ωPn

k
) = 0 for all i < r.

The question becomes: can we interpret this dualising sheaf? We know that for Pn
k

that the dualising sheaf is given by the canonical sheaf, hence the abuse of notation.
Similarly, we have that for X nonsingular projective that this is true. The statement
of Serre duality holds for Cohen–Macaulay varieties, i.e. we allow mild singularities.
But then it’s harder to interpret the dualising sheaf.
For completeness’ sake we can give the duality result for Pn

k = Proj k[x0, . . . , xn].
Recall that OPn

k
(1) consists of the linear forms on Pn

k, and higher twists corresponds
to higher-degree equations.

Theorem 24 (Serre duality for Pn
k). We have that

1. Hi(Pn
k,OPn

k
(r)) = 0 for all 0< i < n and r ∈ Z.

2. Hn(Pn
k,OPn

k
(−n− 1))∼= k;

13



3 0 4 0 0
2 0 3 0 0
1 0 2 0 0
0 0 1 0 0
-1 0 0 0 0
-2 0 0 1 0
-3 0 0 2 0
-4 0 0 3 0
-5 0 0 4 0

r
i -1 0 1 2

Table 1: hi(P1
k,OP1

k
(r))

4 0 15 0 0 0
3 0 10 0 0 0
2 0 6 0 0 0
1 0 3 0 0 0
0 0 1 0 0 0
-1 0 0 0 0 0
-2 0 0 0 0 0
-3 0 0 0 1 0
-4 0 0 0 3 0
-5 0 0 0 6 0
-6 0 0 0 10 0
-7 0 0 0 15 0

r
i -1 0 1 2 3

Table 2: hi(P2
k,OP2

k
(r))

3. H0(Pn
k,OPn

k
(r)) × Hn(Pn

k,OPn
k
(−n − r − 1)) → Hn(Pn

k,OPn
k
(−n − 1)) ∼= k is a

perfect pairing of k-vectorspaces.

This yields the pictures in tables 1 to 4.
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