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Abstract

These are the notes for my second lecture on Grothendieck duality in the
ANAGRAMS seminar. They continue the discussion of Riemann–Roch and Serre
duality started in the first lecture, by giving some applications.
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1 Applications of Riemann–Roch for curves

As the first lecture didn’t allow for a discussion of any applications I have moved
these to (the notes of) the second lecture.

1.1 Geometric genus equals arithmetic genus

For a projective nonsingular curve C we get that

(1) parith(C) = 1−χ(C ,OC) = h1(C ,OC) = h0(C ,Ω1
C) = pgeom(C).

Hence the arithmetic and geometric genus agree. The geometric genus “counts the
number of holes” whereas the arithmetic genus doesn’t really count anything (it can
be negative in more general situations1, because its generalisation is an alternating
sum).

1.2 Curves of degree d in Pn
k

If C is given as a curve of degree d in Pn
k we can take a hyperplane section C∩H = D

for a divisor. Then we get

(3) χ(L(D)) = d + 1− pa(C)

as the degree of the divisor D is always d, which can be considered an application
of Bézout’s theorem.

1.3 Vanishing of H1

The theorem of Riemann–Roch should be view in terms of the Riemann–Roch prob-
lem, which is the study of the (asymptotic) behaviour of h0(C ,OC(np)), for p ∈ C ,
or more general divisors. So the question becomes: can we determine h1, or the h0

of ωC(−D)? The answer is given in [1, remark IV.1.3.2]:
Lemma 1. If deg(D)> 0 and n deg(D)> deg(KC) then h0(C ,OC(KC − nD)) = 0.

Proof. This is an application of [1, lemma IV.1.2]: if h0(C ,OC(D)) ≥ 1 for some
divisor D we have deg(D) ≥ 0. To prove this statement, observe that we can
obtain an effective divisor D′ linearly equivalent to D, because we can use the non-
zero global sections of OC(D) and take the divisor of zeroes [1, proposition II.7.7].
Hence deg(D) = deg(D′)≥ 1.
So if n deg(D)> deg(KC) we get deg(KC − nD)≤−1 and therefore

(4) h0(C ,OC(KC − nD)) = 0.

So if KC − nD becomes “sufficiently negative” its H0 will vanish, hence we have
solved the Riemann–Roch problem!

1E.g., the disjoint union of two P1
k ’s, because its arithmetic genus equals

(2) 1−χ(P1
k t P

1
k ,OP1ktP

1
k
) = 1− (2− 0) =−1.

.
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1.4 The degree of the canonical divisor

The canonical divisor still might be a mysterious beast. But Riemann–Roch at least
tells us its degree: applying it to KC and using the definition of the genus we get

(5) g − 1= deg(KC) + 1− g

i.e. deg(KC) = 2g − 2.
So for P1

k, where the genus is 0, we get that the canonical divisor is the −2∞ we’ve
seen before. For elliptic curves (i.e. curves of genus 1) we get that the canonical
divisor has degree 0, and again because the genus is 1 we know that there are (only)
the constants as differentials, hence the canonical divisor is equivalent to 0.

1.5 Rational function with pole in a point

The Riemann–Roch problem has several special cases. One of them is the following
situation [1, exercise IV.1.1]:

There exists a nonconstant rational function which is regular everywhere
except at a given point p.

It suffices to take D = p in the context of the Riemann–Roch problem, and as soon
as n > deg(KC) we have a non-zero global section for OC(np). By the previous
results on the degree of the canonical divisor we can easily understand how high
we should at least go:

1. if C = P1
k then n = 1 suffices as the degree of the canonical divisor is −2,

our point p ∈ P1
k corresponds to an a ∈ C on some affine chart, the desired

rational function with a pole in p is nothing but (z− a)−1;

2. if C is an elliptic curve the degree of the canonical divisor is 0, so again n = 1
suffices;

3. for higher genus curves the choice of n> 2g − 2 will always give us a rational
function, but in general a lower number could do. This is discussed further in
the paragraph on Weierstrass gaps.

1.6 Rational functions with poles in several points

In a completely analogous manner we can find rational functions with poles in any
number of points, as long as we don’t put a bound on the multiplicity of the pole.
This is [1, exercise IV.1.2]. At this rate we will have solved all the exercises of this
section in a whim2

1.7 Weierstrass points

We had the Riemann–Roch problem for a divisor of the form np, where we were in-
terested in the numbers h0(C ,OC(np)). These numbers count the rational functions

2I won’t do this though, but you are cordially invited to do them as they are interesting and not as
frightening as most exercises in Hartshorne’s book.
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n -1 0 1 2 . . . 2g − 2 2g − 1 2g . . .

h0(C ,OC(np) 0 1 ? ? ? ? g g + 1 . . .

Table 1: Behaviour of h0(C ,OC(np)

with prescribed behaviour. If n> deg(KC) = 2g − 2 we had a complete knowledge
about the behaviour. On the other hand, if n ≤ −1 we have no global sections,
whereas n= 0 yields the constants. For n= 2g − 1 on the other hand we get

(6) h0(C ,OC((2g − 1)p)) = 2g − 1− g + 1= g

and for n = 2g − 1+ k we get g + k as the correction term will always be zero.
Hence we get the following table We also know that

1. the numbers that we fill in have to be increasing: if a pole of order at most n
in p exists, it surely exists if we allow poles of order n+ 1;

2. they can moreover only increase by at most 1: if f and g are rational functions
with a pole of the same order, then there exists a constant c such that f +cg has
a pole of lower order (by cancelling the leading term in the local expression
for f and g).

For low genera we also know what happens:

1. g = 0 has no missing terms, it is (starting from n=−1)

(7) 0, 1,2, 3,4, 5, . . .

2. g = 1 has no missing terms, it is (starting from n=−1)

(8) 0, 1,1, 2,3, 4, . . .

3. g = 2 has one missing term, it is (starting form n=−1)

(9) 0, 1,1, ?, 2, 3, . . .

What we don’t know is whether the sequence of numbers will depend on the choice
of p (it does). It is a bit mysterious at first sight, but on a genus 2 curve there will
be exactly 6 points3 for which the missing term is 2, whereas all the others have
missing terms 1. This behaviour is the same for all higher genera: there are finitely
many points in which the behaviour is “not as expected”, where the expectation is
that the sequence starts with g + 1 copies of 1, after which it increases by 1 each
time. Moreover, the number of exceptional points is g(g2 − 1) (if one weighs them).

Definition 2. The points with “exceptional behaviour” as explained before are called
Weierstrass points

The sequence of missing terms associated to such a Weierstrass point is interesting
to study, and depends on the type of curve we are considering. This ties in with
the use of Riemann–Roch in the classification of curves. In the case of hyperelliptic
curves (in arbitrary genus) the Weierstrass points are exactly the ramification points
(with their correct weights!) but in general it’s harder to say what they correspond
to geometrically.

3These 6 points correspond to the ramification points of the degree 2 map to P1
k: every genus 2 curve

is hyperelliptic, i.e. given by y2 = f (x) for f of degree 5 or 6.
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1.8 The group law on elliptic curves

The Riemann–Roch theorem is also useful in proving that an elliptic curve E has
a group structure. If one wishes to construct the group law by purely geometric
notions proving the associativity is a bit hard (which is odd, because most of the
times this axiom is rather easy to check). But there is an obvious group structure on
the divisors, which we can put to good use.
To do so we will need Pic0(E), this is the subgroup of degree-zero elements of Pic(E)
which is the group of all divisors modulo linear equivalence. The divisor of a rational
function has degree zero, hence we have defined

(10) Pic0(E) = {D ∈ Div(E) | deg(D) = 0}/{÷( f ) | f ∈ k(E)}.

Then we pick a neutral element p0 ∈ E. This yields the map

(11) E 7→ Pic0(E) : p 7→ OE(p− p0).

To see that this is a surjection, we take D a divisor of degree 0. We wish to
show that there exists a unique point p ∈ E such that D is linearly equivalent
to p− p0. As the degree of the canonical divisor is 0 we get deg(KE − D− p0) =−1,
so h0(E,OE(KE − D− p0)) = 0. Hence h0(E,OE(D+ p0)) = 1. As before we can find
an effective divisor linearly equivalent do D + p0, but as the the dimension is 1
and by applying [1, proposition II.7.7] we get that this divisor is unique (the linear
system is zero-dimensional). As the degree of this divisor is 1 we get a single point p,
i.e. the divisor p is rationally equivalent to D+ p0, or D = p− p0 in Pic0(E).

1.9 Classification of curves

Time and space don’t permit me to write anything about it, but Riemann–Roch is
crucial in tackling classification problems for curves.

2 Applications of Riemann–Roch for surfaces

2.1 Irregularity of a surface

Let S be a projective nonsingular surface. Its geometric genus is

(12) pgeom(S) = h0(S,ωS) = h2(S,OS)

whereas its arithmetic genus is parith(S) = h2(S,OS)− h1(S,OS). Hence

(13) pgeom(S)≥ parith(S).

Originally the Italian school thought (without knowing what sheaf cohomology was,
they did all these things in more classical terms) that there was an equality. When
they found out there are surfaces that have the strict inequality they dubbed the
difference the irregularity.
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2.2 Vanishing of H2

As in the case of curves we have a criterion for the vanishing of a cohomology group
if a certain numerical criterion is satisfied [1, lemma V.1.7].
Proposition 3. Let H be an ample divisor on a surface S. Then there exists an
integer n0 (in fact, it is KS · H) such that, if D is a divisor for which D · H > n0,
then H2(S,L(D)) = 0.

Recall that the situation for curves asks deg D > n0 = 2gC − 2 for H1(C ,L(D)) to be
zero.
These vanishing results are pervasive throughout algebraic geometry. As we’ve seen
in this talk the correct notion to study is the Euler–Poincaré characteristic, which
incorporates all cohomological information. If one is interested in a single number
though (which one often is) this requires these vanishing results in order to obtain
a conclusion on this single number.

2.3 Invariants of special surfaces

Surfaces come in a wealth of families or shapes. Often we can find interesting
(numerical) information for a specific choice of surface(s).

1. If S is a surface of degree d in P3
k (i.e. defined by a homogeneous equation of

degree 4 in four variables such that the Jacobian matrix is nonsingular) then
the self-intersection of the canonical divisor KS is given by

(14) KS · KS = d(d − 4)2.

Hence this number depends on d, in the same way deg(KC) depended on g.

2. If S is again a surface of degree d in P3
k such that it contains a straight

line C = P1
k then C ·C = 2−d. Hence we get negative self-intersection if d ≥ 3,

which at first is a truly counterintuitive thing. In characteristic 0 one can find
such a surface for any choice of d.

3. If S = C × C ′ is a product of two curves of genus g and g ′ respectively, then

(15) KC×C ′ = 8(g − 1)(g ′ − 1).
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