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The main goal of these notes is to prove degeneration of the Hodge-to-de
Rham spectral sequence for a proper smooth scheme X over a perfect field k of
characteristic p > 0. We will need that X is of dimension < p and that X can
be lifted to W2(k), the ring of Witt vectors of length 2.

These notes are mainly based on the well-written text by Illusie [Ill02].
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1 Derived categories

We give a short overview of the theory of derived categories.
We use the cohomological convention for chain complexes, i.e. the di↵erential

increases the degree. The category of chain complexes over an abelian category
A will be denoted by C(A). We say a chain complex L is bounded below
(resp. bounded above, resp. bounded) if Li = 0 for su�ciently small i (resp.
for su�ciently large i, resp. for i outside of a bounded interval). A chain
complex is said to be concentrated in a certain range, if it is zero outside of this
range. Following [Ill02], we use the ‘topological’ convention for shifts of chain
complexes: we define the chain complex C[i] as C[i]n = Ci+n with di↵erential
dn
C[i] = (�1)idn+i

C

. If C is concentrated in degree 0, then C[i] is concentrated
in degree �i.

For a chain complex L, we denote the degree n cocycles by ZnL, the degree
n coboundaries by BnL and the homology by HnL. If A is the category of
O

X

-modules associated to a scheme X, we will use the notation HnL instead
of HnL to avoid confusion with sheaf cohomology. In this case, we also use the
notation C(X) instead of C(A). For a morphism f : C ! D of complexes, there
is an induced morphism in homology HnC ! HnD. If this is an isomorphism
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for every n, then f is called a quasi-isomorphism. For a complex C we can
define its cohomology complex

H•C =
M

i2Z
HiC[�i],

equipped with zero di↵erential. It’s not necessarily true that there is a quasi-
isomorphism C ! H•C or H•C ! C. So taking homology forgets important
information, and this will be the motivation for derived categories.

We define the naive truncation Ln (resp. L�n) as the quotient (resp.
subcomplex) of L that coincides with L in degrees i  n (resp. i � n) and
that is zero elsewhere. The canonical truncation ⌧n

L (resp. ⌧�n

L) is defined
to be the subcomplex (resp. quotient) of L that coincides with L in degrees
i < n (resp. i > n), is given by ZnL (resp. Ln/BnL) in degree n, and is zero
elsewhere. The canonical truncation behaves more naturally with respect to
taking homology: the maps ⌧n

L ! L (resp. L ! ⌧�n

L) are isomorphisms in
homology in degrees i  n (resp. degrees i � n).

Definition 1.1. Let A be an abelian category. The derived category D(A) is
the localization of C(A) with respect to quasi-isomorphisms. More precisely,
there is a map C(A) ! D(A) that is universal among functors sending quasi-
isomorphisms to isomorphisms, i.e. this map sends quasi-isomorphisms to iso-
morphisms and for any other category C and functor C(A) ! C, there is a
factorization

C(A) C

D(A)

F

through D(A).

Note that it is not trivial that such a category D(A) exists, but existence
will follow from the explicit construction we are going to give. For this explicit
construction, we need to pass through the homotopy category K(A).
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Definition 1.2. Let f, g : C ! D be two maps of chain complexes. Then f
and g are homotopic if there exists a family of maps sn : Cn ! Dn+1 such that

sn�1 � dn
C

+ dn+1
D

� sn = f � g.

The homotopy category K(A) is then the category with the same objects as
C(A) and as arrows homotopy classes of maps in C(A).

We mention the following theorem from [Kel07].

Theorem 1.3. The derived category D(A) can be constructed as follows:

• The objects are the same as in C(A).

• The arrows from L to M are triples (M 0, f, s) with M 0 another object, f a
map L ! M 0 and s a quasi-isomorphism M ! M 0. We use the suggestive
notation s�1f to denote this map.

M 0

L M

f

s

• Two arrows (M 0, f, s) and (M 00, f 0, s0) are the same if there exists some
arrow (M 000, f 00, s00) and maps M 0 ! M 000, M 00 ! M 000 such that the
following diagram commutes in K(A):

M 0

L M 000 M

M 00

f

f

00

f

0

s

s

00

s

0

.

• For every two arrows (M 0, f, s) : L ! M and (N 0, g, t) : M ! N , there is
an arrow (N 00, g0, s0) : M 0 ! N 0. We define the composition of (M 0, f, s)
and (N 0, g, t) to be the triple (N 00, g0f, s0t). The composition is associative.

N 00

M 0 N 0

L M N

g

0
s

0

f

s

g

t

• The maps (L, id, id) : L ! L are identity maps.

Remark 1.4. There is an analogous (and of course equivalent) construction
of the derived category with as maps L ! M triples (M 0, s, f) where s is a
quasi-isomorphism M 0 ! L and f is a map M 0 ! M .

M 0

L M

s

f
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Definition 1.5. We call two chain complexes quasi-isomorphic if they become
isomorphic in the derived category. We call a chain complex decomposable (or
formal) if it is quasi-isomorphic to its cohomology. For a decomposable chain
complex C, a decomposition is a map C ! H•C in the derived category, inducing
the identity in homology.

Remark 1.6. If a chain complex C is indecomposable, there are in general
many di↵erent decompositions.

In [Tho01], an example is given of a chain complex that is not decomposable:

Example 1.7. The two chain complexes of C[x, y]-modules

C[x, y]�2 C[x, y] and C[x, y] C,(x,y) 0

have the same homology groups, but are not quasi-isomorphic. As a conse-
quence, the first chain complex is not decomposable.

Note that the category of C[x, y]-modules has global dimension 2. It is not
possible to give a similar example if A has global dimension 0 or 1. For a proof
we refer to [Kel07], section 2.5.

Definition 1.8. We denote by D+(A) (resp. D�(A), resp. Db(A)) the full
subcategory of D(A) consisting of these complexes for which the cohomology
complex is bounded below (resp. bounded above, resp. bounded). We use
analogous notations for K(A).

The following proposition [Sta15, Tag 05TA] tells us how derived functors
give functors between derived categories, and how to compute them.

Proposition 1.9. Let F : A ! B be an additive functor of abelian categories.

• If every object of A injects into some F -acyclic object, then RF is defined
on all of K+(A) and we obtain an exact functor

RF : D+(A) ! D+(B).

Moreover, let C be a chain complex over A. Then any isomorphism in
D(A) to a bounded below complex D with F -acyclic components, yields an
isomorphism

RF (C) ! F (D).

• If every object of A is a quotient of an F -acyclic object, then LF is defined
on all of K�(A) and we obtain an exact functor

LF : D�(A) ! D�(B).

Moreover, let C be a chain complex over A. Then any isomorphism in
D(A) to a bounded above complex D with F -acyclic components, yields an
isomorphism

LF (C) ! F (D).
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Remark 1.10. An exact functor between derived categories is, informally, a
functor sending long exact sequences to long exact sequences. The precise for-
mulation uses the so-called triangulated structure on a derived category, which
is beyond the scope of these notes. The proposition above is, of course, still
valid after replacing ‘exact functor’ with just ‘functor’.

Remark 1.11. Note that all injective objects are F -acyclic for left exact func-
tors. Similarly, all projective objects are F -acyclic for right exact functors.

Proposition 1.12. Let F : A ! B be an additive functor between abelian
categories. Assume that A has enough injectives. Let K be a complex in D+(A).
Then there is a spectral sequence

Epq

1 = RqF (Kp) ) Rp+qF (K),

called the first spectral sequence of hypercohomology.

Our main example occurs when we take K = ⌦•
X/k

and F = f⇤, where X
is a scheme over a field k with structure map f : X ! Spec k. This gives the
spectral sequence

Epq

1 = Rqf⇤(⌦
p

X/k

) ) Rp+qf⇤(⌦•
X/k

).

Taking global sections gives an exact equivalence of abelian categories between
the category of OSpec k-modules and k-vector spaces. So we can take global
sections at each side of the spectral sequence. We then get

Epq

1 = Hq(X,⌦p

X/k

) ) Hp+q(X,⌦•
X/k

) = Hp+q

dR (X/k),

i.e. de Hodge-to-de Rham spectral sequence. Note that if X is proper over
k, then this already shows that the de Rham cohomology groups are finite-
dimensional: the ⌦p

X/k

are coherent, so each term in E1 is finite-dimensional,
and from this it follows that also the groups to which they converge are finite-
dimensional (being finite-dimensional is closed under taking subquotients and
extensions). Another fact we can already deduce from the existence of the
spectral sequence is

X

i+j=n

dim
k

Hj(X,⌦i

X/k

) � dim
k

Hn

dR(X/k)

This is trivial after realizing that taking homology always reduces the dimension.
Moreover, it strictly reduces the dimension whenever some di↵erential is non-
zero. So the degeneration of the Hodge-to-de Rham spectral sequence is actually
equivalent to the equality

X

i+j=n

dim
k

Hj(X,⌦i

X/k

) = dim
k

Hn

dR(X/k).

2 Degeneration in positive characteristic

2.1 Step A: Everything lifts globally

Recall the setting from last time: S is some scheme over F
p

, T a flat lift of S
to Z/p2Z, and X a smooth S-scheme. Denote the Frobenius twist of X by X 0,
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and assume that X,X 0 and the relative Frobenius F : X ! X 0 can be lifted (as
a whole) to G : Z ! Z 0 over T .

X X 0 Z Z 0

S T

SpecF
p

SpecZ/p2Z

F G

Note that we have an exact sequence of Z/p2Z-modules

0 Z/pZ Z/p2Z Z/pZ 0.
p

Pulling back this exact sequence to T gives

0 O
S

O
T

O
S

0,
p

which is again exact by flatness of T (note that S and T have the same under-
lying topological space). We have completely analogous short exact sequences
for Z and Z 0 (which are flat over T , so in particular flat over SpecZ/p2Z).

Because X (so also X 0) is smooth by assumption, the cotangent sheaf ⌦1
X/S

is locally free, in particular flat. Moreover, we saw in the second lecture [Pre15,
Proposition 2.4 (2)] that

⌦1
Z/T

⌦OZ O
X

' ⌦1
X/S

.

So we get a short exact sequence

0 ⌦1
X/S

⌦1
Z/T

⌦1
X/S

0.
p

Proposition 2.1. Suppose we are in the above situation. Then:

a) Multiplication by p induces an isomorphism

⌦1
X/S

p⌦1
Z/T

p

⇠= .

b) Pulling back di↵erentials on Z 0 to Z gives multiples of p, i.e. there is a
factorization

⌦1
Z

0
/T

G⇤⌦1
Z/T

pG⇤⌦1
Z/T

G

⇤

.

c) There is a factorization

⌦1
Z

0
/T

pG⇤⌦1
Z/T

⌦1
X

0
/S

F⇤⌦1
X/S

G

⇤

“G⇤
/p”

⇠= p

.
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Moreover, the image of G⇤/p is contained in the kernel of the di↵erential of
the de Rham complex, i.e. in Z1F⇤⌦•

X/S

, and the composite with the projec-

tion to H1F⇤⌦•
X/S

gives the Cartier isomorphism

⌦1
X

0
/S

H1F⇤⌦•
X/S

ds sp�1 ds

⇠=
C

�1

Proof. a) This follows from the exact sequence we already found.

b) Because G is a lift of F , we have for a local section of O
Z

0

G⇤(a) = ap + pb for some b

G⇤(da) = pap�1 da+ p db.

c) We have ⌦1
X

0
/S

' ⌦1
Z

0
/T

⌦OZ0 OX

0 , so the factorization follows by the uni-

versal property of the pullback (note that F⇤⌦1
X/S

is an O
X

0
/S

-module).
Moreover, we have for a local section a of O

Z

0

(G⇤/p)(da) = ap�1 da+ db,

which is a cocycle and actually the Cartier iso

C�1(da) = ap�1 da

after quotienting out the coboundaries.

Corollary 2.2. Let

'
G

:
M

i2Z
⌦i

X

0
/S

[�i] ! F⇤⌦•
X/S

be defined by

F ⇤ : O0
X

! F⇤OX

in degree 0,

G⇤/p : ⌦1
X

0
/S

! F⇤⌦1
X/S

in degree 1,

and then extended multiplicatively, i.e. via

⌦i

X

0
/S

=
V

i ⌦1
X

0
/S

V
i

F⇤⌦1
X/S

F⇤⌦i

X/S

Vi(G⇤
/p) mult. .

Then '
G

is a quasi-isomorphism, inducing the Cartier isomorphism C�1 in
homology.

Proof. It is enough to prove the statement in degrees 0 and 1, because the
Cartier isomorphism is in higher degrees also determined by multiplicativity.
But the statement in degree 0 follows directly from the definition of the Cartier
isomorphism, and the statement in degree 1 is Proposition 2.1, part c.
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2.2 Step B: The relative Frobenius lifts only locally;

decomposability in degrees 0 and 1

This is the trickier part. We do not longer assume that everything lifts to T ,
we only assume that X 0 lifts to T (to some fixed Z 0). Note that everything
lifts at least locally: the obstruction to lifting X lies in Ext2(⌦1

X

,O
X

), and the
obstruction to lifting the Frobenius lies in Ext1(F ⇤⌦1

X

0 ,O
X

). So the existence
of local liftings follows from the fact that X and X 0 are smooth (note that X 0 is
a pullback of X, so if X is smooth, then X 0 is automatically also smooth). We
will prove that ⌧1F⇤⌦•

X/S

is still decomposable. To this extent, we will try to
“glue” quasi-isomorphisms like in the previous step. First we need the following
uniqueness statement.

Lemma 2.3. To any pair

Z1

Z 0

Z2

G1

G2

of liftings of F , is associated canonically a map

h(G1, G2) : ⌦
1
X

0
/S

! F⇤OX

such that
'1
G2

� '1
G1

= dh(G1, G2).

If G3 : Z3 ! Z 0 is a third lifting of F , one has

h(G1, G2) + h(G2, G3) = h(G1, G3).

Proof. First suppose Z1 and Z2 are isomorphic as deformations, i.e. there is an
isomorphism

Z1 Z2

T

⇠=

inducing the identity on X. Choose such an isomorphism u : Z1 ! Z2. Then
both G2u and G1 lift F . Therefore they di↵er by some

h
u

: ⌦1
X

0
/S

! F⇤OX

.

Indeed, consider the lifting diagram

X Z 0

Z1 T

F

G1

G2u
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and notice that Z1 is a first-order infinitesimal thickening with ideal O
X

. So
G2u�G1 is given by some map

⌦1
Z

0
/T

! F⇤OX

,

or equivalently, a map
⌦1

X

0
/S

! F⇤OX

.

Now if we take another isomorphism v : Z1 ! Z2, we have a similar lifting
diagram

X Z2

Z1 T

u

v

,

and now v � u is given by some map ⌦1
X/S

! O
X

. However, after composing
with G2 we get

X Z 0

Z2

Z1 T

F

G2

u

v

Note that postcomposing with G2 sends derivations to derivations functorially,
so using Yoneda lemma we translate the above to

F ⇤⌦1
X

0
/S

' F ⇤⌦1
Z

0
/T

O
X

⌦1
X/S

G2u�G2v

F

⇤ .

Because we are in characteristic p, we have for any local section a in O
X

0 that

F ⇤(da) = d(ap) = pap�1 da = 0.

So in particular, G2u = G2v, which means the choice of isomorphism does not
matter here! As a consequence, we can just set h(G1, G2) = h

u

for some choice
of isomorphism u. For a local section a of O

Z

0 we have the following explicit
descriptions of G⇤

1, G
⇤
2 and h(G1, G2)⇤:

G⇤
1(a) = ap + pb1

G⇤
2(a) = ap + pb2

h(G1, G2)
⇤(a) = b2 � b1

(notice that h(G1, G2)⇤ maps to O
X

and that the inclusion O
X

✓ O
Z

is given
by multiplication by p, so h(G1, G2) is the di↵erence of G1 and G2, although it
might not look like it). For the '1’s we get similarly

('1
G2

� '1
G1

)(da) = d(b2 � b1) = dh(G1, G2)(a).

9



The formula
h(G1, G2) + h(G2, G3) = h(G1, G3)

is now also immediate.

Now let X =
S

i

U
i

be an open covering, and choose liftings

U
i

X 0 Z
i

Z 0

S T

Fi Gi

.

For each i, consider the map

⌦1
X

0
/S

[�1]
���
Ui

F⇤⌦•
X/S

���
Ui

fi='

1
Gi

and for each pair (i, j) the maps

⌦1
X

0
/S

[�1]
���
Uij

F⇤⌦⇤
X/S

���
Uij

hij

with
h
ij

= h(G
i

��
Uij

, G
j

��
Uij

).

So we have

f
j

� f
i

= dh
ij

on U
ij

(1)

h
ij

+ h
jk

= h
ik

on U
ijk

. (2)

Proposition 2.4. The above data canonically induce a map

⌦1
X

0
/S

[�1] Č(U , F⇤⌦•
X/S

).1.

Proof. The Čech complex on the right is the complex that is in degree n given
by

Č(U , F⇤⌦•
X/S

)n =
M

a+b=n

Čb(U , F⇤⌦a

X/S

)

and with di↵erential d = d1 + d2, where d1 is the de Rham di↵erential and d2
the usual Čech complex di↵erential. Recall that

Čb(U ,F) =
Y

i0...ib

F(U
i0 [ · · · [ U

ib)

and that the di↵erential is given by

d2 : Čb(U ,F) = Čb+1(U ,F)

d2(a)i0...ib+1 =
p+1X

k=0

(�1)ka
i0...̂ik...ib

.

1
For a guide to typesetting

ˇ

Cech checks in L

A
T

E

X, see https://pbelmans.wordpress.com/

2014/11/24/nitpicking-cech-cohomology/.
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The homomorphism in the proposition should of course map into the degree 1
elements of the Čech complex, being

Č(U , F⇤⌦•
X/S

)1 = Č1(U , F⇤OX

)� Č0(U , F⇤⌦1
X/S

).

We define it as

⌦1
X

0
/S

[�1] Č1(U , F⇤OX

)� Č0(U , F⇤⌦1
X/S

)

! {h
ij

(!)}
ij

� {f
i

(!)}
i

.

We need to show that this yields a morphism of complexes, so ! maps to a
cocycle for d = d1 + d2. This gives:

h
jk

� h
ik

+ h
ij

= 0

dh
ij

� f
j

+ f
i

= 0

df
i

= 0.

The last condition just says that the f
i

are maps of complexes, which is part of
Corollary 2.2). The first two conditions are the equations 1 and 2 above.

We have a quasi-isomorphism

✏ : F⇤⌦•
X/S

! Č(U , F⇤⌦•
X/S

)

because the Čech complex defines a resolution. Now define

'1
Z

0 : ⌦1
X

0
/S

[�1] ! F⇤⌦•
X/S

as the map in D(X 0) given by the triangle

Č(U , F⇤⌦•
X/S

)

⌦1
X

0
/S

[�1] F⇤⌦•
X/S

✏

This is independent from the covering U : take another covering V and set
W = U t V. Then we have a diagram

Č(U , F⇤⌦•
X/S

)

⌦1
X

0
/S

[�1] Č(W, F⇤⌦•
X/S

) F⇤⌦•
X/S

Č(V, F⇤⌦•
X/S

)

that is commutative in K(X) (even in C(X)). Moreover, it is easy to see that
'1
Z

0 induces C�1 on H1.
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2.3 Step C: The relative Frobenius lifts only locally;

extending the decomposition to higher degrees

Now we want to construct maps 'i

Z

0 for 2  i < p, extending '1
Z

0 from the
previous subsection. We have

(⌦1
X

0
/S

[�1])
L⌦i ! (F⇤⌦•

X/S

)
L⌦i.

Because ⌦1
X

0
/S

is locally free, we have

(⌦1
X

0
/S

[�1])
L⌦i ' (⌦1

X

0
/S

)⌦i[�i].

Similarly,

(F⇤⌦•
X/S

)
L⌦i ' (F⇤⌦•

X/S

)⌦i.

Now define

⌦i

X

0
/S

[�i] (⌦1
X

0
/S

[�1])⌦i (F⇤⌦•
X/S

)⌦i F⇤⌦•
X/S

!1 ^ · · · ^ !
i

1
i!

X

�2Si

sgn(�)!
�(1) ⌦ · · ·⌦ !

�(i)

('1
Z0 )

⌦i
mult.

Note that here 1
i! exists because of the assumption i < p. The above map again

induces the Cartier isomorphism C�1 in homology, by multiplicativity.

2.4 Witt vectors of length two

We now proved decomposability of ⌧
<p

F⇤⌦•
X/S

in the case that X 0 lifts to T .
This will enable us to prove degeneration of the Hodge-to-de Rham spectral
sequence in the following case.

Let X be a scheme over a perfect field k of characteristic p. We will consider
lifts of X (and its relative Frobenius) over some first-order infinitesimal thick-
ening T of k. One important such infinitesimal thickening is the a�ne scheme
associated to the so-called ring of Witt vectors of length two, W2(k). As a set,
W2(k) consists of pairs (a1, a2) 2 k ⇥ k. The ring structure is defined by

(a1, a2) + (b1, b2) = (a1 + b1, S2(a, b)),

(a1, a2)(b1, b2) = (a1b1, P2(a, b)),

where

S2(a, b) = a2 + b2 + p�1(ap�1
1 + bp�1

1 � (a1 + b1)
p),

P2(a, b) = bp1a2 + b2a
p

1.

There is a cartesian diagram

Spec k SpecW2(k)

SpecF
p

SpecZ/p2Z
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where the map W2(k) ! k is given by projecting onto the first factor. Moreover,
W2(k) is flat over Z/p2Z, i.e. it lifts k.

Now suppose that the scheme X can indeed be lifted globally to a scheme
Z over W2(k). Note that X 0 is isomorphic to X: it is the pullback of X along
the absolute Frobenius of k, which is an isomorphism. So also X 0 can be lifted
to some Z 0 over W2(k).

We already proved the following proposition.

Proposition 2.5. Let k be a perfect field of characteristic p, and X a smooth
scheme over S = Spec k. If X is lifted over T = SpecW2(k), then ⌧

<p

F⇤⌦•
X/S

is decomposable in D(X 0). Moreover, if X is of dimension < p, then F⇤⌦•
X/S

is
decomposable.

In general the relative Frobenius can only be lifted locally. If, in this setting,
the relative Frobenius can be lifted globally, then we call X an ordinary variety.
For example, a�ne varieties are ordinary.

We now arrive at the main goal of these notes.

Theorem 2.6. Let k be a perfect field of characteristic p, and X a smooth
and proper scheme over S = Spec k, of dimension < p. If X is lifted over
T = SpecW2(k), then the Hodge-to-de Rham spectral sequence

Eij

1 = Hj(X,⌦i

X/k

) ) H•
dR(X/k)

degenerates at E1.

Proof. Consider the pullback diagram

X

X 0 X

S S

FX

F

F̃S

FS

from the definition of the relative Frobenius F . Note that the absolute Frobenius
F
S

is an isomorphism, and so also F̃
S

is an isomorphism. In particular they are
both flat. We get an isomorphism

F ⇤
S

Hj(X,⌦i

X/k

) Hj(X 0,⌦i

X

0
/k

)⇠

(taking cohomology commutes with flat base change). Note that we again use
the formula F̃ ⇤

S

⌦i

X

0
/k

' ⌦i

X/k

from [Pre15, Proposition 2.4 (2)]. In particular,
comparing dimensions gives

dim
k

Hj(X,⌦i

X/k

) = dim
k

Hj(X 0,⌦i

X

0
/k

).

Also, the relative Frobenius F is a homeomorphism, so we have an isomorphism

Hn(X 0, F⇤⌦•
X/k

) Hn(X,⌦•
X/k

) = Hn

dR(X/k).⇠ .
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Now take a decomposition

' :
L

i

⌦i

X

0
/S

[�i] F⇤⌦•
X/S

⇠

in D(X 0). Taking nth cohomology on both sides yields an isomorphism

M

i+j=n

Hj(X 0,⌦i

X

0
/k

) Hn(X 0, F⇤⌦•
X/k

) ⇠= Hn

dR(X/k)⇠ ,

and comparing dimensions gives

dim
k

Hn

dR(X/k) =
X

i+j=n

dim
k

Hj(X,⌦i

X/k

).

At the end of Section 1 we showed that this is equivalent to degeneration of the
Hodge-to-de Rham spectral sequence at E1.
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