
Limits of schemes and density theorems
and counterexamples to degeneration in positive characteristic

Sebastian Klein

1 Introduction

The main aim of this talk is to introduce technology that will help us prove the Hodge-to-deRham
degeneration theorem (H2dR) in characteristic 0. The results that I will present are rather technical in
nature, so I will refrain from giving full proofs in order to not lose track of the general picture.

Before we dive into this material, let us wrap up last time’s discussion of H2dR in positive character-
istic by giving some examples where the spectral sequences does not degenerate

2 Counterexamples to H2dR in positive characteristic

As we saw last time, H2dR holds for a smooth and proper scheme X over a perfect field k with p > dim(X )
that can be lifted to the Witt vectors of length 2 W2(k). There are, however, counterexamples that are
not too pathological: for instance, Lang classifies quasi-elliptic surfaces in characteristic 3 in [Lan79].
Along the way, he computes the numbers hi, j , hk

DR for these surfaces for low i, j, k and comes across an
example of a surface X where h1,0(X ) = h0,1(X ) = 2 but h1

DR(X ) = 3. This means that H2dR cannot hold
for X .

A different strategy to obtain counterexamples is the following: let k be a field of positive characteristic
and X an algebraic variety over k. The E1-page of the Hodge-to-de-Rham spectral sequence is given as

Ep,q
1 = Hq(X ,⌦p

X/k) .

In particular, it contains the map

E1,0
1 = H0(X ,⌦1

X/k)
d�! H0(X ,⌦2

X/k) = E2,0
1

given by the exterior derivative. In order to prove that H2dR does not hold for X , it suffices to show that
d 6= 0, i.e. we need to exhibit a regular differential on X that is not closed. This strategy is for example
used by Mumford (see [Mum61]) or Fossum (see [Fos81]).

Here is a very rough sketch of Mumford’s construction: he begins by showing that for every non-
singular algebraic surface X over k and not necessarily regular differential ! on X , there exists a surface
' : X ⇤ ! X that is regular and separable over X such that '⇤(!) is a regular differential of X ⇤. Then, as
'⇤ is injective in this case and satisfies d'⇤(!) = '⇤(d!), it suffices to exhibit a non-singular algebraic
surface X with a differential ! on X such that d! 6= 0. Take X = P2

k and ! = xdy .

2.1 Remark. As mentioned in the last talk, the failure of H2dR for these surfaces shows that they cannot
admit a lifting to the Witt vectors of length 2.
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3 Limits of schemes

Let us now focus on the tools that we need to prove H2dR in characteristic 0. In this part of the lecture,
our goal will be to answer questions along the following lines: if X is a nice scheme over S, and S is
given as the projective limit of a system of nice schemes lim �Si , then does there exist some i and a nice
scheme Xi over Si such that X = Xi ⇥Si

S? Furthermore, if f : X ! Y is a nice morphism of S-schemes,
then does there exist a j and a nice morphism f j : X j ! Yj of Sj-schemes, such that f = f j ⇥Sj

idS?
In order to tackle these questions, let us briefly discuss some generalities about projective limits of

schemes:

3.1 Theorem. Let (Y↵,↵ 2 I) be an projective system of schemes over a directed poset I such that the
transition maps u↵� : Y↵ ! Y� are affine for all ↵,� � ↵0. Then Y := lim �↵2I

Y↵ exists in the category of
schemes.

Sketch of the proof. For any scheme X , there is a 1:1 correspondence

{quasi-coherent OX -algebras}ù {affine morphisms X 0 ! X }
S 7! Spec(S )! X

f⇤(OX 0) [ f : X 0 ! X

By the above correspondence, we therefore get an inductive system of quasi-coherent OY0
algebras

S↵,↵� ↵0. If we set S := lim�!↵�↵0
S↵, then Y = Spec(S ) will be a projective limit of the Y↵.

In particular, the projective limit of a projective system of affine schemes (Spec(A↵)) always exists and
is given as Spec(lim�!↵2I

A↵). We will show next that “descending” a scheme X over S to S↵0
is equivalent

to giving it as the limit of a special kind of projective system. This is often a more convenient point of
view.

3.2 Lemma. Let X be a scheme over S which in turn is given as the projective limit lim �↵2I
S↵ over the

projective system (S↵, u↵� ,↵� � 2 I) where all the transition maps are affine. Then the following statements
are equivalent:

(i) There exists ↵0 2 I and a scheme X↵0
over S↵0

such that X = X↵0
⇥S↵0

S.

(ii) There exists ↵0 2 I and a projective system of schemes X↵ over S↵ for ↵ � ↵0 with transition maps
v↵� such that there is a cartesian diagram

X↵
v↵� //

✏✏

X�

✏✏
S↵

u↵� // S�

for all ↵� � � ↵0 and such that lim �↵�↵0
X↵ = X .

2



Proof. Let us prove (i))(ii). For ↵� ↵0, we define a projective system of schemes over S↵ for ↵� ↵0 as
follows: we set X↵ := X↵0

⇥S↵0
S↵. In order to define transition maps v↵� : X↵! X� for ↵� � � ↵0, we

consider the following commutative diagram:

X↵

((

✏✏

v↵�
  
X� //

✏✏

X↵0

✏✏
S�

u�↵0 // S↵0

S↵

u↵↵0

66
u↵�

>>

(1)

The map v↵� exists because the the square

X� //

✏✏

X↵0

✏✏
S�

u�↵0 // S↵0

(2)

is cartesian. Furthermore the square

X↵
v↵� //

✏✏

X�

✏✏
S↵

u↵� // S�

is cartesian, as its composition with the square (2) yields the outer square of (1), which is cartesian by
construction. Note that this implies that the transition maps v↵� of the projective system X↵,↵� ↵0 are
affine, as this property is stable under base change. Therefore, lim �↵�↵0

X↵ exists by Theorem 3.1 and we

compute that

lim �
↵�↵0

X↵ = lim �
↵�↵0

X↵0
⇥S↵0

S↵ = X↵0
⇥S↵0

0
@ lim �
↵�↵0

S↵

1
A = X↵0

⇥S↵0
S = X ,

where we used that projective limits and fiber products commute (as they do in any category) and the
last equality is true by assumption.

In order to prove (ii))(i), note that by assumption, we have

X = lim �
↵�↵0

X↵ = lim �
↵�↵0

X↵0
⇥S↵0

S↵ = X↵0
⇥S↵0

0
@ lim �
↵�↵0

S↵

1
A = X↵0

⇥S↵0
S

where the first equality is true by assumption and the rest follows as in the previous part of the proof.
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3.3 Definition. We call a projective system of schemes as in part (ii) of Lemma 3.2 cartesian for ↵� ↵0.

Lemma 3.2 then says that condition (i) is equivalent to X being the limit of a projective system of
scheme over S↵ that is cartesian for ↵� ↵0. This is the setting that is studied in [Gro66]. Before we start
stating theorems, let us fix a general set-up.

3.4 Convention. In the following, let X , Y denote finitely presented schemes over an affine scheme S
and assume that S = lim↵2I S↵ is the projective limit of affine schemes S↵ over a directed poset I with
transition maps u↵� : S↵! S� for ↵� � .

3.5 Theorem (cf. [Gro66, Théorème 8.8.2(ii)]). In the situation of 3.4, assume that X is finitely presented
over S. Then for some ↵0 2 I there exists a finitely presented scheme X0 over S↵0

such that X = X0 ⇥S↵0
Y .

As mentioned earlier, theorems like this are helpful, when all the schemes S↵ are nicer than S.
We will use this particular theorem in the case where S = Spec(K) for K a field of characteristic 0
and S↵ runs over all sub-Z-algebras of K of finite type. In that case, the scheme X↵0

is of finite type
over Z and in particular noetherian! By Lemma 3.2 we have then written X as a projective system of
noetherian schemes. This is sometimes referred to as noetherian approximation. Another possible setting
is localization: if S = Spec(Ap) with p 2 Spec(A), then S↵ can run over Spec(Af ) for all f 2 A\p. We also
note that a more general version of the above theorem holds if we replace the system of affine schemes
S↵ by a general system of schemes that has affine transition maps.

Let us now give a proof of Theorem 3.5 in the case where X is affine. The general case is obtained by
a gluing argument (see [Gro66, Théorème 8.8.2(ii)]).

Proof of Theorem 3.5 (affine case). Let us first fix some �0 2 I and replace I by the cofinal subset

I 0 = {↵ 2 I : ↵� �0} .

The rings A↵ := �(S↵,OS↵) for ↵ 2 I 0 together with the transition maps u⇤↵� : A� ! A↵ for �  ↵ make
(A↵, u⇤↵�) an inductive system of A↵0

-algebras wit limit lim�!↵2I 0 A↵ = �(S,OS) =: A and canonical maps
u⇤↵ : A↵ ! A for all ↵ 2 I 0. Set X = Spec(B) for some finitely presented A-algebra B. By assumption,
B = A[x1, . . . , xn]/I where I is a finitely generated ideal. Fix a set of generators F1, . . . , Fm of I . Each
Fi is a polynomial with coefficients in A, and for each coefficient c of Fi , we can find some ↵c 2 I 0 such
that c = u⇤↵c

(c0) for some c0 2 A↵c
. As the set of all coefficients of F1, . . . , Fm is finite we can find a ↵0 such

that all of them arise as image of elements in A↵0
under the map u⇤↵0

. Therefore, we can find polynomials
F 01, . . . F 0m in A↵0

[x1, . . . , xn] such that u⇤↵0
(F 0i ) = Fi . If we denote by I 0 ⇢ A↵0

the ideal generated by
F 01, . . . , F 0m, it follows that the image of I 0 ⌦A↵0

A in A[x1, · · · , xn] is exactly I . Now we apply the functor
�⌦A↵0

A to the exact sequence
I 0 ! A↵0

[x1, . . . , xn]! B↵0
! 0

to show that B = B↵0
⌦A↵0

A. The construction also shows that B↵0
is finitely presented.

3.6 Remark. As mentioned before, one deduces Theorem 3.5 from the affine case by a gluing construction.
For the argument, it is essential that a morphism of schemes is defined to be of finite presentation if it is
locally of finite presentation and quasi-compact and quasi-separated. Quasi-compactness is used in order
to ensure that the ↵0 for all the affine pieces have a supremum. Quasi-separatedness ensures that the
intersection of the affines is quasi-compact, which makes gluing possible.
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Let us now continue by proving another result in the spirit of Theorem 3.5. This time, we want to
descend morphisms of schemes. In order to do this, assume we are given schemes X , Y over S and two
projective systems of schemes (X↵, v↵�), (Y↵, w↵�) over the projective system (S↵, u↵�), such that the
systems X↵, Y↵ are cartesian for ↵� ↵0 and lim �↵2I

S↵ = S, lim �↵2I
X↵ = X , lim �↵2I

Y↵ = Y . By Theorem 3.5
and Lemma 3.2, this happens, for example, if the schemes S↵ are affine and X , Y are finitely presented
over S. If ↵0  ↵ � , we have maps

e�↵ : HomS↵(X↵, Y↵)! HomS� (X� , Y� )

f 7! f ⇥S↵ idS�

which make HomS↵(X↵, Y↵), e�↵,↵� ↵0 an inductive system of sets. Furthermore, for all ↵� ↵0 we have
maps

e↵ : HomS↵(X↵, Y↵)! HomS(X , Y )

f 7! f ⇥S↵ idS

which satisfy e� � e�↵ = e↵. Therefore, they induce a natural map

e : lim�!
↵�↵0

HomS↵(X↵, Y↵)! HomS(X , Y ) (3)

3.7 Theorem (cf. [Gro66, Théorème 8.8.2(i)]). Assume the situation of Convention 3.4, so that the above
discussion applies as well. Then the natural map

e : lim�!
↵

HomS↵(X↵, Y↵)! HomS(X , Y )

from (3) is bijective.

Proof (affine case). Let us show the statement in the case that all schemes X↵ = Spec(B↵), Y↵ = Spec(C↵)
are affine. Let S↵ = Spec(A↵). By Theorem 3.5 and Lemma 3.2 we can assume that the projective systems
X↵, Y↵ are cartesian and that X↵, Y↵ are finitely presented over S↵ for ↵� ↵0 . The statement we want to
prove then looks as follows:

Let A↵ be an inductive system of rings such that lim�!↵ A↵ = A. Let B↵0
, C↵0

be A↵0
-algebras of finite

presentation. Then the canonical map

lim�!
↵�↵0

HomA↵�alg(C↵0
⌦A↵0

A↵, B↵0
⌦A↵0

A↵)! HomA�alg(C↵0
⌦A↵0

A, B↵0
⌦A↵0

A)

is bijective.
First, let us note that we have functorial isomorphisms

HomA↵�alg(C↵0
⌦A↵0

A↵, B↵0
⌦A↵0

A↵)⇠= HomA↵0
�alg(C↵0

, B↵0
⌦A↵0

A↵) (4)

HomA�alg(C↵0
⌦A↵0

A, B↵0
⌦A↵0

A)⇠= HomA↵0
�alg(C↵0

, B↵0
⌦A↵0

A) (5)

which are constructed as follows: we have maps

HomA↵�alg(C↵0
⌦A↵0

A↵, B↵0
⌦A↵0

A↵)
s
ù
t

HomA↵0
�alg(C↵0

, B↵0
⌦A↵0

A↵) (4)

f 7! s( f ); s( f )(x) := f (x ⌦ 1)
t(g)(x ⌦ y) := g(x) · y ; t(g) [ g
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which are mutually inverse (similarly for (5)). We are therefore reduced to proving the following:
Let G, F be E-algebras such that F = lim�!↵ ini

F↵. Then the natural map

lim�!
↵2I

HomE(G, F↵)! HomE(G, F)

which assigns to each inductive system of maps f↵ its inductive limit is bijective.
We first show injectivity: since G is a finitely presented algebra by assumption, it will in particular

be finitely generated. Let (ti)0in be a system of generators for G and fix two inductive systems of
maps ( f↵), (g↵) such that f := lim�! f↵ = lim�! g↵ =: g. Let us show that there exists some µ such that
fµ = gµ (which is equivalent to ( f↵) = (g↵) in lim�!↵�↵0

HomE�alg(G, F↵)). Let us denote by '�↵ : F↵! F�
for � � ↵ and '↵ : F↵ ! F the canonical maps. By hypothesis, for each i, there exists �i such that
'�i
( f�i
(ti)) = '�i

(g�i
(ti)), and by taking � � �i for all i, we actually have '�( f�(ti)) = '�(g�(ti)) for

0  i  n. Thus, there exists µ � � such that 'µ�( f�(ti)) = 'µ�(g�(ti)) for 0  i  n. Therefore, we
have that fµ(ti) = gµ(ti) for 0  i  n, from which it follows that fµ = gµ. (Note that this step only
needed that G is finitely generated.)

In order to prove surjectivity, we will need the full assumption that G is finitely presented: write

G = E[T1, . . . , Tn]/J
where J is a finitely generated ideal such that ti ⌘ Ti mod J . Let (Pj)1 jm be a system of generators
for J . If we’re given a morphism of E-algebras ✓ : G ! F , we want to show that ✓ = lim�!↵ ✓↵ for
some inductive system of maps (✓↵)↵�↵0

. Let bi := ✓(ti), then by definition we have Pj(b1, . . . , bn) =
✓(Pj(t1, . . . , tn)) = 0. Furthermore, there exists a � and x1, . . . , xn 2 F� such that '�(xi) = bi for
1 i  n and therefore '� (Pj(x1, . . . , xn)) = Pj(b1, . . . , bn) = 0 for 1 j  m. It follows that there exists
a � � � such that '��(Pj(x1, . . . , xn)) = Pj('��(x1), . . . ,'��(xn)) = 0 for 1 j  m. We conclude that
there exists a morphism of E-algebras ✓� : G! F� defined by ✓ (�)(ti) = '�� (xi). For � � �, we define
✓� : G! F� as the composition '�� � ✓�. We have then defined an inductive system of maps ✓�,� � �
such that lim�!��� ✓� = ✓ .

3.8 Corollary. Assume the situation of 3.4 and let f : X ! Y be an S-morphism. Then there exists
↵0 2 I and finitely presented schemes X↵0

, Y↵0
over S↵0

and a S↵0
-morphism f↵0

: X↵0
! Y↵0

such that
f = f↵0

⇥S↵0
idS.

Proof. By Theorem 3.7, f is the inductive limit of an inductive system of morphisms ( f↵ : X↵! Y↵)↵2I .
By the discussion preceding Theorem 3.7, the maps inducing e as in 3 are given for � � ↵0 as e� ( f↵0

) =
f� ⇥S� idS . It follows that f = e(( f↵)↵2I ) = e↵0

( f↵0
) = f↵0

⇥S↵0
idS .

In view of Corollary 3.8 it is natural to ask whether f↵0
can be chosen in such a way that it shares

some desirable properties of f , i.e. whether we can “descend” properties of f to f↵0
. This ties in with the

philosophy that properties of schemes are really properties of their structural morphisms. The answer to
the question is positive for many useful properties of f . Note that one would naturally expect that those
properties are stable under base change.

3.9 Theorem. Let X be an S-scheme of finite presentation. If X is smooth (resp. projective, proper) over S,
then there exists an ↵0 and a smooth (resp. projective, proper) scheme X↵0

of finite presentation over S↵0

such that X = X↵0
⇥S↵0

S.
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The proofs of these statements are of varying degrees of difficulty. If X is of finite presentation
and projective over S = Spec(A), this means that X is a closed subscheme of Pn

A which is cut our by a
finitely generated homogeneous ideal of A[X1, . . . , Xs]. But all the generators of this ideal are images of
generators of a homogeneous ideal in A↵0

[X1, . . . , Xs] that determines a closed subscheme of Pn
A↵0

. This

is the projective scheme over X↵0
we are looking for. The proofs for smooth and proper schemes are

more complicated and we will skip them.
Let us finish the discussion by stating that we can also descend finitely presented OX -modules over

finitely presented S-schemes, as well as morphisms between them.

3.10 Theorem. Assume the situation of Convention 3.4.

(i) If E is a finitely presented OX -module, then there exists a finitely presented OX↵ -module E↵0
such that

E is induced from E↵0
by base change with S. Furthermore, the following properties can be descended

from E to E↵0
: locally free (of rank r), (very) ample invertible (if X is projective and we choose X↵0

to
be projective as well by Theorem 3.9).

(ii) Let E, F be finitely presented OX -modules. Then there exists a cartesian inductive system of finitely
presented S↵-schemes X↵ and cartesian systems of O )X↵ -modules E↵, F↵ such that the natural map

lim�!
↵

HomOX↵
(E↵, F↵)! HomOX

(E, F)

is bijective.

4 Finiteness of residue fields, density of closed points and smooth
locus

The techniques discussed up to this point will be combined with the following statements.

4.1 Theorem (see [Gro66, 10.4]). Let S be a scheme of finite type over Z.

(i) If x is a closed point of S, the residue field k(x) is a finite field.

(ii) All locally closed non-empty subsets Z ⇢ S contain a closed point of S.

Sketch of the proof. By assumption, S =
Sn

i=1 Spec(Ai), where Ai is a finitely generated Z-algebra, i.e.
there is a surjection Z[x1, . . . xni

] ê Ai . The first statement then follows from a standard result in
commutative algebra (“finitely generated fields are finite fields”).

By definition, a scheme whose underlying topological space X satisfies condition (ii) is a Jacobson
scheme. A scheme is Jacobson if and only if it can be covered by opens Spec(Ai) such that all Ai are
Jacobson rings (i.e. every prime ideal in Ai is an intersection of maximal ideals). Finitely generated
Z-algebras are of this type.

Theorem 4.1 can easily fail if S is not of finite type over Z.
4.2 Example. Let K be an infinite field. The residue field at the closed point of Spec(K) is the field K
which is not finite.
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4.3 Example. Let R be any local ring of Krull dimension � 1. Then Spec(R) has a unique closed point m.
The set U = Spec(R) \ {m} is nonempty and open, and therefore certainly locally closed in Spec(R).
However, U does not contain a closed point of Spec(R). Also note that there exist schemes that do not
have closed points at all (see [Sch05])!

Let us finish by stating a theorem which tells us that an integral scheme of finite type over Spec(Z) is
generically smooth.

4.4 Proposition. Let S be an integral scheme of finite type over Spec(Z). The set of points where S is
smooth over Spec(Z) is a non-empty open (i.e. dense) set. In particular, if A is a finite type Z-algebra and
integral, there exists s 2 A such that Spec(As) is smooth over Spec(Z).

4.5 Remark. In the proof of H2dR in characteristic 0, the techniques from Section 3 will allow us to
pass from a smooth and proper scheme over a field K of characteristic 0 to a smooth and proper scheme
over Spec(A) where A is a finite type Z-algebra. Theorem 4.4 will then make it possible to replace A by
an algebra As which is smooth over Spec(Z), and by Theorem 4.1, Spec(As) contains a closed point of
Spec(A) which has finite residue field. This will allow us to conclude with a characteristic p argument.
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