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1 Preliminaries

In order to prove some of the properties of smooth, unramified and étale mor-
phisms, we need to revise some results on the sheaf of relative differentials. The
main reference for this section is [3, Section 1].

Definition 1.1. Let i : X → Z be an immersion of associated ideal I. Consider the
subscheme Z1 of Z with the same underlying space as X and defined by the ideal
I2. Then one has that j factors in a unique way into

X
i1−→ Z1

h1−→ Z

where h1 is an immersion and i1 is a thickening of order 1 with associated ideal
I/I2.

The pair (i1, h1), or just Z1, is called the first infinitesimal neighbourhood of i . The
ideal I/I2 is called the conormal sheaf of i and is usually denoted by NX /Y .

Consider a morphism of schemes f : X → Y and the associated diagonal mor-
phism ∆ : X → X ×Y X . Observe that, by definition, the sheaf of relative differen-
tials Ω1

X /Y is conormal sheaf of∆, as Ω1
X /Y = I/I2 where I is the ideal associated to

the immersion∆.

Consider now X
∆1−→ Z1

h1−→ X ×Y X the first infinitesimal neighbourhood of∆.

Definition 1.2. The structure sheaf of the first infinitesimal neighbourhood of the
diagonal is called the sheaf of principal parts of order 1 of X over Y , and it is usually
denoted by P1

X /Y .

Remark 1.3. Observe that by construction we have the following exact sequence of
sheaves of OX -modules

0→Ω1
X /Y →P1

X /Y →OX → 0 (1)

Note that if we compose the two projections of X ×Y X on X with h1 : Z1→ X ×Y X
we obtain two morphisms p1, p2 : Z1→ X that provide a retraction to the thicken-
ing ∆1. Denote by j1, j2 : OX → P1

X /Y the associated morphisms of sheaves to p1
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and p2. They provide and splitting of (1). Hence (1) is an split exact sequence of
OX -modules (and in particular of f −1(OY )-modules).

This also provides a way of defining globally the differential dX /Y .

Definition 1.4. We define dX /Y :OX →Ω1
X /Y to be the difference j2− j1 which takes

values on Ω1
X by the definition of j1 and j2.

Proposition 1.5. Given a morphism of schemes f : X → Y , the infinitesimal neigh-
bourhood of order 1 of∆ : X → X ×Y X parametrizes the pairs of Y -points of X con-
gruent modulo an ideal of square zero. More precisely, if i : T0 → T is a thickening
of order 1 with associated ideal I where T is a Y -scheme, and t1, t2 : T → X are two
morphisms of Y -schemes that coincide modulo I, i.e. t1 ◦ i = t2 ◦ i = t0 : T0→ X , then
there exists a unique Y -morphism h : T → Z1 such that p1 ◦h = t1 and p2 ◦h = t2.

In addition, if t ∗1 , t ∗2 : OX → t0∗OT are the homomorphisms of sheaves associated to
t1 and t2, t ∗2 − t ∗1 ∈DerY (OX , t0∗I) such that (t ∗2 − t ∗1 )(s ) = h ∗(d s ) = h ∗(( j2− j1)(s )).

2 Basic properties of smooth, unramified and étale mor-
phisms

2.1 Extensions

First we recall the definition of extensions of modules over a ring and their proper-
ties. The main reference we have followed for the first part of the present section is
[5, Section 3.4].

Definition 2.1. Let R be a ring and A, B two R -modules. An R -extension of A by B
is an exact sequence

ξ : 0→ B → E → A→ 0

of R -modules.

Definition 2.2. We say that two R -extensions ξ,ξ′ of A by B are equivalent if there
is a commutative diagram

ξ : 0 B E A 0

ξ′ : 0 B E ′ A 0

ϕ∼=

of R -modules.

We say an extension is split if it is equivalent to 0→ B → A⊕B → A→ 0.

Definition 2.3. Given ξ : 0→ B
i−→ E

p
−→ A→ 0 and ξ′ : 0→ B

i ′−→ E ′
p ′

−→ A→ 0 two
R -extensions of A by B , we can define the Baer sum of ξ and ξ′ as follows. Take
E ′′ = E ×A E ′ = {(x , x ′) ∈ E ×E ′, p (x ) = p (x ′)} the pullback in the category Mod(R ).
Observe that the elements of the skew diagonal D = {(i (b ),−i ′(b ))} ∈ E × E ′ form
an R -submodule of E ′′ and that they are sent to zero in A. Let F = E ′′/D , then one
can easily check that

0→ B → F → A→ 0
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is an R -extension of A by B . We call it the Baer sum of ξ and ξ′.

The zero element for Baer sum is the equivalence class of split extensions of A by
B .

It can be checked that the definition of Baer sum behaves well with respect to the
equivalence relation defined above, hence we get the following:

Proposition 2.4. The set of equivalent classes of R -extensions of A by B can be en-
dowed with the structure of an abelian group by means of the Baer sum. The zero
element under the Baer sum is the equivalence class of split extensions.

Theorem 2.5. Let A, B be two modules over a ring R . Then there is a group isomor-
phism:

{equivalent classes of R -extensions of A by B }→Ext1
R (A, B )

Remark 2.6. The definitions above can be given analogously for quasi-coherent
sheaves over a scheme. Thus, given a scheme X and two quasi-coherent rings F,G
of OX -modules, we can talk of OX -extensions of F by G, their equivalence classes,
the Baer sum and we also have the group isomorphism:

{equivalent classes of OX -extensions of F by G}→Ext1
OX
(F,G)

defined analogously as in the case for modules. Note that we are not using sheaf
cohomology, otherwise it is in general not true that local extensions glue to a global
extension in the sheaf cohomology.

Now we provide a geometric definition of another type of extensions and its prop-
erties. For this part of the notes we have strongly followed [3] and [2].

Definition 2.7. Let f : X → Y a morphism of schemes and let Ibe a quasi-coherent
OX -module. A Y -extension of X by I is a morphism i : X → X ′ over Y which is a
thickening of order 1 with ideal I.

Definition 2.8. Given two Y -extensions i1 : X → X1 and i2 : X → X2 of X by I, we
say that they are equivalent if there exists an Y -isomorphism g : X1→ X2 such that
the diagram

X

X1 X2

i1

i2

g

is commutative and it induces the identity on I.

We will denote by ExtY (X ,I) the set of equivalent classes of Y -extensions of X by
I.

Remark 2.9. This notion coincides in the affine setting with the notion of a (square
zero) extension of an algebra over a ring by a bimodule [5, p. 311].

As it happened with module extensions, we can also construct a “Baer sum” in the
set ExtY (X ,I) such that it becomes an abelian group where the zero element is the
equivalence class of the trivial Y -extension of X by I, i.e. it is the canonical mor-
phism i : X → X ′, where X ′ is the scheme with the same underlying topological
space as X and with structure sheaf OX ⊕ I the idealization of I.
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2.2 Properties of smooth, unramified and étale morphisms

Proposition 2.10. The following properties hold:

1. Let f : X → Y be a morphism of schemes. If f is smooth (resp. unramified)
then OX -module Ω1

X /Y is locally free of finite type (resp. zero).

2. Let X
f
−→ Y

g
−→ S be morphisms of schemes. If f is smooth, then the first fun-

damental exact sequence extended by a zero to the left:

0→ f ∗Ω1
Y /S →Ω

1
X /S →Ω

1
X /Y → 0 (2)

is exact and locally split.

In particular if f is étale f ∗Ω1
Y /S →Ω

1
X /S is an isomorphism.

3. Consider the commutative diagram of morphisms of schemes

X Z

Y

i

f
g

(3)

where i is a closed immersion with associated ideal I. If f is smooth, then the
second fundamental exact sequence extended by a zero to the left:

0→ I/I2→ i ∗Ω1
Z /Y →Ω

1
X /Y → 0 (4)

is exact and locally split.

In particular, if f is étale the canonical homomorphism I/I2 → i ∗Ω1
Z /Y is an

isomorphism.

We will provide a proof following as main reference [3].

First we prove 3. for f smooth:

Assume f is smooth and denote X
i1−→ Z1

h1−→ Z the first infinitesimal neighbour-
hood of i : X → Z . Consider the diagram

X Z

X Z1 Y

i

f
g

i1

Id
r

h1

where we know, by definition of smooth morphism, that such an r : Z1→ X exists
Zarisky-locally in Z1 making the diagram commute. Then we have that morphisms
t1 = h1 ◦ i1 ◦ r, t2 = h1 : Z1→ Z locally defined in Z1 coincide locally when restricted
to X , as we have t1 ◦ i1 = i = t2 ◦ i1 locally. By means of Proposition 1.5, we have
that t ∗2 − t ∗1 is locally an Y -derivation of OZ in i∗(I/I2)). Hence we have that t ∗2 − t ∗1
induces locally a morphism s : i ∗Ω1

Z /Y → I/I2 of OX -modules via

DerY (OZ , i∗(I/I
2))∼=HomOZ

(Ω1
Z /Y , i∗(I/I

2))∼=HomOX
(i ∗Ω1

Z /Y ,I/I2)
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and one can check that s gives us a local retraction of the canonical I/I2→ i ∗Ω1
Z /Y ,

which gives us the locally split exactness of the short exact sequence.

Now we will proof two lemmas that will provide us the key ingredients for the rest
of the proof.

Lemma 2.11. Let f : X → Y be a smooth morphism of schemes. Consider the mor-
phism

e : ExtY (X ,I)→Ext1
OX
(Ω1

X /Y ,I)

that associates to every Y -extension i : X → Z of X by a quasi-coherent OX -module
I, the exact sequence of OX -modules

e (i ) : 0→ I→ i ∗Ω1
Z /Y →Ω

1
X /Y → 0

Then, the morphism e is an isomorphism of groups.

Proof. We will give a sketch of the proof as it appears in [3]. First of all, by Propo-
sition 2.10.3. we have that the sequence (4) is split exact. But as i : X → Z is an
Y -extension of X by I, by definition we have that I2 = 0 in Z , which gives us the
exact sequence ofOX -modules e (i ) above. Then, one can check that the morphism
e preserves “Baer sum”.

It remains to prove that it is an isomorphism. An inverse can be constructed as
follows. Take

0→ I→M
p
−→Ω1

X /Y → 0

an element in Ext1
OX
(Ω1

X /Y ,I). Consider now the canonical split exact sequence of
OX -modules

0→Ω1
X /Y →P1

X /Y →OX → 0

where P1
X /Y is the sheaf of principal parts of order 1 of X over Y. Via the morphism

j1 :OX →P1
X /Y we have an isomorphism OX ⊕Ω1

X /Y

∼=−→P1
X /Y of OX -modules and in

particular of f −1(OY )-modules. Then, if we take F := OX ⊕M, we get a short exact
sequence

0→ I→F
Id⊕p
−−→P1

X /Y → 0

which provides an element in Ext1
f −1(OY )

(P1
X /Y ,I).

Notice that if we consider F as the trivial extension (or the so called idealisation
of M) with the structure of f −1(OY )-algebra given by the product (a , m ) · (a ′, m ′) =
(a ·a ′, a ·m ′+a ′·m ), we have that the morphism of schemes X → X ′ (where X and X ′

have the same underlying topological space) given by Id⊕p is a thickening of ideal
I. If then one considers the image of this extension by j2 = dX /Y + j1 : OX → P1

X /Y

(see [2, Section 1.1.3.]) one gets an f −1(OY )- extension of OX by I

0 I E OX 0

0 I OX ⊕M P1
X /Y 0

ù
j2

Id⊕p

This extension defines a thickening of order one of OX by the ideal I. The mor-
phism of schemes i : X → Z associated to E→OX (X and Z have the same under-
lying topological space) is an element of ExtY (X ,I). This construction gives us the
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inverse of the morphism e and it can also be checked to preserve the “Baer sum”,
which completes the proof.

Lemma 2.12. Let f : X → Y be a morphism locally of finite presentation between
affine schemes (i.e. it corresponds to a morphism of rings A → B making B a an
A-algebra of finite presentation). Then f is smooth if and only if ExtY (X ,I) = 0 for
every quasi-coherent OX -module I.

Proof. Assume X = Spec(B ), Y = Spec(A) with A, B rings and B finitely presented
A-algebra. The condition of the morphism f to be smooth in this affine setting
can be translated to the following. The morphism f : X → Y is smooth if for any
commutative diagram

B

C /I C A
r

f

with C an A-algebra and I an A-submodule of C such that I 2 = 0 in C , then there
exists an arrow r : B →C of A-algebras that makes the diagram commutative.

Giving i : X → X0 an Y -extension of X by I in the affine case is reduced to giving
an A-algebra C and a surjection p : C →C /I where I is an A-submodule of C such
that I 2 = 0 inside C and B ∼=C /I as an A-algebra. The trivial Y -extension of X by I
is in the affine case given by B ⊕ I with the trivial extension structure of A-algebra.

Assume f is smooth, then for any Y -extension p : C →C /I ∼= B of X by I= eI (sheaf
of modules associated to I ) we have the following diagram

B

C /I C A

∼=
r

f

Then one can easily check that the morphism r ⊕ i : B ⊕ I →C is an isomorphism
of A-algebras where i : I ,→C is the natural injection. It reduces to use the fact that
r is a retraction of C → B . Hence one deduces immediately that the extension C is
equivalent to the trivial extension, which concludes one direction of the argument.

Now assume ExtY (X ,I) is locally trivial. Consider any thickening of order 1 over Y ,
i.e. an A-algebra C and a A-submodule I of C such that I 2 = 0 in C , and assume
we have the following commutative diagram:

B

C /I C A

g
f

Take the exact sequence
0→ I →C →C /I → 0

Observe that as C /I is a B -algebra and I 2 = 0, we get an structure of B -module on
I . Applying the image of this extension of algebras by the morphism g : B → C /I
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[2, Section 1.1.3.], we have the following commutative diagram

0 I B ×C /I C B 0

0 I C C /I 0

p ′

q g

p

where the upper row provides a Y -extension of X by I = eI . By hypothesis, this ex-
tension is trivial, hence the exact sequence is split exact and we can take a retrac-
tion h : B → B ×C /I C of p ′. Then it follows from the commutativity of the diagram
and the fact that p ◦h = IdB that the morphism r = p ◦q ◦h : B → C /I makes the
following diagram commutative

B

C /I C A

∼=
r

f

Thus f : X = Spec(B )→ Y = Spec(A) is smooth.

We can now procceed to prove the rest of the theorem.

First we prove point 1:

Assume f : X → Y is smooth. As smoothness is a local notion in the source and the
target, by Lemma 2.12 we have that every Y -extension of X by any quasi-coherent
OX -module I is locally trivial. Hence we have that Ext1

OU
(Ω1

U /Y ,I|U ) = 0 for all open
subsets U of X and all I quasi-coherent OX -coherent modules as a direct conse-
quence of Lemma 2.11. Thus the sheaf Ext1

OX
(Ω1

X /Y ,I) associated to the presheaf

U 7→Ext1
OU
(Ω1

U /Y ,I|U ) is zero for all quasi-coherentOX -module Iand consequently

we have that Ext1
OU
(Ω1

U /Y ,J) = 0 for all U open subset of X and all OU -module

J. This fact and the fact that Ω1
X /Y is of finite type, implies that Ω1

X /Y is a locally
free OX -module of finite type. Indeed, we can find a covering of X by open affine
subsets Ui such that Ext1

OUi
(Ω1

Ui /Y ,Ji ) = Ext1
OUi
(Ω1

Ui /Y ,Ji ) = 0 for all quasi-coherent

OUi
-modules Ji . Observe that we have, for each Ui , the following exact sequence

0→Ker(p )→Or
Ui

p
−→Ω1

Ui /Y → 0

Fruthermore we have that Ext1
OUi
(Ω1

Ui /Y ,Ji ) = 0 for all quasi-coherent OUi
-modules

Ji if and only if this short exact sequence is split for all Ui . Hence, for all Ui in the
covering, we have that Ω1

Ui /Y is a direct summand of a free OUi
-module and thus a

projective OUi
-module. As projectives in an affine scheme are locally free, we de-

duce that Ω1
Ui /Y is locally free for all Ui and thus so it is Ω1

X /Y .

Assume now f : X → Y is unramified, which implies, by definition, that at most
there is one retraction of the trivial extension. As a consequence of Proposition 1.5,
one can prove that for any Y -scheme and given the trivial Y -extension i : X → Z
of X by a quasi-coherent OX -module I we have a bijection

{Y -retractions of Z }→HomOX
(Ω1

X /Y ,I) : r 7→ r − r0
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where r0 is the retraction associated to the natural injection OX → OX ⊕ I. As the
retraction provided by r0 always exists, we have that it is the only one, hence for all
quasi-coherent OX ′-module I, HomOX ′ (Ω

1
X ′/Y ,I) = 0 holds, from what we conclude

that Ω1
X /Y = 0.

Now we prove the statement for f étale in point 3:

If f is étale, in particular it is smooth and unramified. By point 3, we already know
that the sequence (4) is exact and locally split. By point 1, we know that Ω1

X /Y = 0,

hence we have that the canonical morphism I/I2→ i ∗Ω1
Z /Y is an isomorphism.

We finish the argument by proving point 2:

Again, as the property of being smooth is local in the source and the target, we can
reduce to proving the statement for the case where X , Y and S are affine. Then, we
have that

0→ f ∗Ω1
Y /S →Ω

1
X /S →Ω

1
X /Y → 0

is exact and split if and only if

0→HomOX
(Ω1

X /Y ,I)→HomOX
(Ω1

X /S ,I)→HomOX
( f ∗Ω1

X /Y ,I)→ 0

is exact for all quasi-coherent OX -module I. We know that this holds if and only
if Ext1

OX
(Ω1

X /Y ,I) = 0 for all quasi-coherent OX -module I. Thus, if f is smooth, we
conclude by Lemma 2.11 and Lemma 2.12.

Assume now f is étale, then in particular it is smooth hence the sequence (3) is
exact and locally split. In addition by point 1, we have that Ω1

X /Y = 0, hence we

can conclude that f ∗Ω1
Y /S → Ω

1
X /S is an isomorphism. This finishes the proof of

Proposition 2.10.

There are converse statements for Proposition 2.10.2. and Proposition 2.10.3. which
provide a nice criterion of smoothness and étaleness for morphisms of sheaves. We
state them here, but we will not provide a proof.

Proposition 2.13. The following properties hold:

1. Let X
f
−→ Y

g
−→ S be morphisms of schemes and assume g ◦ f is smooth. If the

sequence
0→ f ∗Ω1

Y /S →Ω
1
X /S →Ω

1
X /Y → 0

is exact and locally split, then f is smooth.

In particular, if the canonical homomorphism f ∗Ω1
X /Y → Ω

1
X /S is an isomor-

phism, then f is étale.

2. Consider the commutative diagram of morphisms of schemes

X Z

Y

i

f
g

where i is a closed immersion with associated ideal I and assume g is smooth.
If the sequence

0→ I/I2→ i ∗Ω1
Z /Y →Ω

1
X /Y → 0
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is exact and locally split, then f is smooth.

In particular, if the canonical homomorphism I/I2 → i ∗Ω1
Z /Y is an isomor-

phism, then f is étale.

3 Local and global structure of smooth morphisms

The properties of smooth morphisms explained in the previous section allow us
to study the structure of smooth morphisms locally. The main references for this
section are [3] and [1].

Proposition 3.1. Let f : X → Y be a smooth morphism. Let x ∈ X be a point of X .
Then there exists an open neighbourhood U of x and an étale morphism s : U →An

S
for some integer n ≥ 0 such that f |U is the composition U → An

s → S, where the
second morphism is the structure morphism for the affine space.

Hence an smooth morphism is locally an étale morphism composed with the struc-
ture morphism of an affine space.

In order to prove this proposition, we need the following result, which was proven
in the non-relative case in the previous lecture:

Lemma 3.2. Let S be a scheme and n a non-negative integer. Consider X = An
S the

affine space of dimension n over S. Then theOS -moduleΩ1
X /S of relative differentials

is free of rank n with basis {d x1, . . . , d xn}.

The differential d : OX →Ω1
X /S sends a local section s (a polynomial in the variables

xi with coefficients in OS ) to d s =
∑n

i=1
∂ s
∂ xi

d xi .

Proof. As we have seen in the previous lecture,Ω1
X /S is generated as an OX -module

by d s where s is a section of OX . Any section of OX can be written as a polynomial
in x1, . . . , xn with coefficients in OS . As d is a derivation d : OX → Ω1

X /S , it is linear
and satisfies the Leibniz rule, from where it follows easily that

d s =
n
∑

i=0

∂ s

∂ xi
d xi

holds, from what we can conclude that {d x1, . . . , d xn}generateΩ1
X /S as anOX -module.

In order to prove that these set of generators form a basis, consider the freeOX -module
Ω′ with basis {d x1, . . . , d xn} and the following derivation

d ′ :OX →Ω′ : s 7→
n
∑

i=0

∂ s

∂ xi
d xi

By the universal property of Ω1
X /S , there exists a unique morphism of OX -modules

u : Ω1
X /S → Ω

′ such that d ′ = u ◦d , from which we deduce that u maps d xi to d xi

for all i . Hence u is an isomorphism.

Now we can prove Proposition 3.1.
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Proof. From Proposition 2.10 we have thatΩ1
X /Y is locally free of finite type. Hence

we can choose a neighbourhood U of x and sections s1, . . . , sn ∈ Γ (OX ,U ) such that
{d s1, . . . , d sn} form a basis of Ω1

X /Y |U . Consider the morphism s = (s1, . . . , sn ) : U →
An

S = Y [t1, . . . , tn ]. Its composition with the structure morphism of An
S

U
s−→An

S → Y

can be seen to coincide with f |U .

It remains to prove that s is an étale morphism. By Proposition 2.13, it is enough
with checking that s ∗Ω1

An
Y /Y → Ω

1
U /Y is an isomorphism. We have that Ω1

An
Y

is free

and generated by {d t1, . . . , d tn} (Lemma 3.2). Then, by definition of the map s , we
have that s ∗Ω1

An
Y /Y is generated by {d s1, . . . , d sn}, which provides the commutativity

of the diagram

s ∗Ω1
An

Y /Y Ω1
U /Y

s ∗On
An

Y
On

U

∼= ∼=
∼=

Hence s is an étale morphism.

There is also a local model of étale morphisms with a more involved proof than the
previous local characterization of smooth morphisms. We will not provide a proof
here (it can be found in [4]), but we will state the result.

Proposition 3.3. Let f : X → Y be a morphism of schemes. Consider x a point of X
and denote y = f (x ). Assume f is étale at x . Then there exist open affine neighbour-
hoods U = Spec(B ) of x and V = Spec(A) of y with f (U ) ⊂ V , and a Y -immersion
U → A1

Y that identifies U with an open subscheme of a closed subscheme Z ⊂ A1
Y

defined by a monic polynomial P ∈ A[x ] such that P ′ does not vanish on U .

As for a morphism of schemes being smooth (resp. unramified, étale) is local on
the source, we can define what it means for a morphism of schemes to be smooth
(resp. unramified, étale) at a point.

Definition 3.4. Consider a morphism of schemes f : X → Y and let x be a point of
X . We say that f is smooth (resp. unramified, étale) at the point x if there exists an
open neighbourhood U of x in X such that f |U is smooth (resp. unramified, étale).

Proposition 3.5 (Jacobian criterion). Assume we have the following diagram

X Z

Y

i

f
g

where i is an immersion with ideal I and g is smooth. Given x a point of X , f is
smooth at x if and only if there exists a finite number of sections s1, . . . , sr of I on a
neighbourhood of x such that:

1. {s1, . . . , sr } generate Ix
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2. {(d s1)(x ), . . . , (d sr )(x )} are linearly independent in Ω1
Z /Y ⊗ k (x ) where k (x ) is

the residue field at the point x

Proof. We have that f is smooth at x if and only if I/I2→ i ∗Ω1
Z /Y is an split injection

on a neighbourhood of x (Proposition 2.10), and by Nakayama’s lemma this holds
if and only if there exist sections of I/I2 in a neighbourhood of x that generate I/I2

in that neighbourhood and have linearly independent images in i ∗Ω1
Z /Y ⊗k (x ). But

by the definition of the canonical morphism I/I2→ i ∗Ω1
Z /Y (see [1, Proof of 1.1.26])

this is equivalent to the two properties above.

Proposition 3.6 (Implicit function theorem in algebraic geometry). Consider the
following commutative diagram of morphisms of schemes

X Z

Y

i

f
g

where i is an immersion with associated ideal I and both f and g are smooth at
a point x of X .Then we can find an open neighbourhood U of i (x ) in Z , a non-
negative integer n, an étale morphism s : U → An

Y and a linear subspace V of An
Y

such that we have a cartesian diagram

U ∩X U

V An
Y

i

s

Proof. By Proposition 3.5, we can take a set of sections {s1, . . . , sr } of I generating I

in a neighbourhood of x and such that {d s1(x ), . . . , d sr (x )} are linearly indepen-
dent in Ω1

Z /Y ⊗ k (x ). Then we can choose sections {sr+1, . . . , sn} of OZ such that

{d s1(x ), . . . , d sr (x ), d sr+1(x ), . . . , d sn (x )} form a basis of Ω1
Z /Y ⊗k (x ). Then sections

{s1, . . . , sn} define an étale S-morphism s = (s1, . . . , sn ) : U →An
Y = Y [t1, . . . , tn ] from

an open neighbourhood U of x to An
Y (see proof of Proposition 3.1) such that we

have the following commutative diagram

U ∩X U

An−r
Y An

Y

i

s

where U ∩X is given by the inverse image by s of the linear subspace V =An−r
Y with

equations t1 = . . .= tr = 0.

4 Regularity vs smoothness

Definition 4.1. An scheme X is said to be regular or non-singular if for every point
x ∈ X there exists an affine neighbourhood U ⊆ X of x such thatOX (U ) is a noethe-
rian regular ring. Equivalently, X is regular if it is locally noetherian and for every
point x ∈ X , the ring OX ,x is regular.
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Recall that a noetherian ring R is said to be regular if every local ring Rp is a regular
ring, i.e. if for every local ring Rp the maximal ideal can be generated by a regular
sequence of parameters.

Remark 4.2. Observe that regularity is an absolute notion while smoothness is a
relative notion.

Definition 4.3. A field k is said to be perfect if every field extension of k is separable
over k .

Proposition 4.4. If f : X → Y = Spec(k ) is an smooth morphism, where k is a field,
then X is regular, and if x is a closed point of X , k (x ) is a finite separable extension
of k , and the dimension of OX ,x is equal to the dimension dimx (X ) of the irreducible
component of X containing x and to the rank of Ω1

X /Y .

Conversely, if X is regular and k is perfect, then f is smooth.

Remark 4.5. If we choose in the previous setting k to be an imperfect ring, we can
find an example of a regular scheme which is not smooth over its base. Indeed, take
for example the field Fp (t ) of rational functions. It is an imperfect field (see the
question http://math.stackexchange.com/questions/106632/examples-of-fields-
which-are-not-perfect): one can prove that the polynomial x p − t ∈ Fp (t )[x ] is ir-
reducible and if one considers a root α of this polynomial in an extension of Fp (t )
(thus αp = t ), one gets x p −αp = (x −α)p , so α is the unique root of x p − t in the
extension, hence it is an inseparable polynomial. So any field extension k of Fp (t )
containing α is inseparable. Then, if we consider the morphism of affine schemes
Spec(k (x ))→ Spec(Fp (t )), one can prove that this morphism is not smooth, while
Spec(k (x )) is regular (see http://mathoverflow.net/questions/12688/nonsingular-
normal-schemes).

Below (in Proposition 4.8) we will give a more general statement relating smooth-
ness of morphisms and regularity of schemes, but first we provide a reminder of
some definitions.

Definition 4.6. We say a morphism f : X → Y of schemes is flat if OX ,x is an
OY , f (x )-flat module for any point x ∈ X .

Definition 4.7. Given a morphism of schemes f : X → Y , a geometric fibre of f
at a point y ∈ Y is the scheme X y := X ×Y Spec(k (y )) equipped with the reduced

scheme structure, where k (y ) is the algebraic closure of the residue field k (y ) in
the point y .

Proposition 4.8. Let f : X → Y be a morphism of finite presentation. Then the
following are equivalent:

1. f is smooth

2. f is flat and the geometric fibres of f are regular schemes

Proof. See [EGA IV, Corollaire (17.5.2)]
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5 Relative dimension

Let f : X → Y be a smooth morphism of schemes.

Definition 5.1. Let x ∈ X be a point of X . We call relative dimension of f at x the
integer

dimx ( f ) := dimk (x )Ω
1
X /Y ⊗k (x ) = rgOX ,x

Ω1
X /Y ,x

In particular this dimension coincides with the dimension of the irreducible com-
ponent of the fibre X f (x ) that contains x [EGA IV, p. 17.10.2].

Remark 5.2. As f is smooth, we have by Proposition 2.10 that Ω1
X /Y is locally free

of finite type, thus relative dimension of f is a locally constant function on x .

Also as a consequence of Proposition 2.10 and Proposition 2.13, the smooth mor-
phism f is étale if and only ifΩ1

X /Y = 0 which happens if and only if dimx ( f ) = 0 for
every point x ∈ X . Hence by the geometrical interpretation of the relative dimen-
sion at the end of Definition 5.1 and by Proposition 4.8, we have that a morphism
of schemes is étale if and only if it is locally of finite presentation, unramified and
flat.

Definition 5.3. Given a smooth morphism f : X → Y of schemes, we say that f is
of pure relative dimension r if it is of constant locally relative dimension r .

Proposition 5.4. If f : X → Y is a smooth morphism of schemes of relative dimen-
sion r , then the de Rham complex Ω•X /Y is zero in degrees strictly bigger than r , and

Ωi
X /Y is a locally free OX -mopdule of rank

�r
i

�

. In particular Ωr
X /Y is an invertible

OX -module.

Proof. It is easily deduced from the construction of the de Rham complex, which
was done in the previous lecture.
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