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This is a basic introduction to Cayley–Hamilton algebras in the spirit of [Le
07].

1 Definition

By “algebra” we mean a unital associative C-algebra.

Definition 1. An algebra with trace (R, tr) is an algebra R together with a
C-linear function tr : R→ R, satisfying the following properties for all a, b ∈ R.

1. (Maps into center) tr(a)b = tr(b)a,

2. (Necklace property) tr(ab) = tr(ba),

3. (Linear w.r.t. traces) tr(tr(a)b) = tr(a)tr(b).

An algebra with trace (R, tr) is called Cayley–Hamilton of degree n if for all
a ∈ R it additionally satisfies:

1. tr(1) = n,

2. χ
(n)
a (a) = 0.

The characteristic polynomial χ
(n)
a of a is defined as follows. If a would have

been an n × n-matrix, then the characteristic polynomial has as coefficients
symmetric polynomials in n variables x1, . . . , xn (the eigenvalues of a). These
symmetric polynomials are freely generated as a ring by the power sum polyno-
mials xk1 + · · · + xkn = tr(ak). This fact enables us to interpret each coefficient
in a unique way in terms of traces. For example,

χ(2)
a (t) = t2 − tr(a)t+

1

2

(
tr(a)2 − tr(a2)

)
.

Algebras with trace can be made into a category alg@ with as arrows the trace
preserving algebra maps. The full subcategory of degree n Cayley–Hamilton
algebras is denoted by alg@n.

For a Cayley–Hamilton algebra R, the image tr(R) ⊆ R is a subalgebra of
the center of R: it is clearly a linear subspace, and tr(a)tr(b) = tr( 1

n tr(a)tr(b)),
which shows that the product of two elements in tr(R) again lies in tr(R). Often
tr(c) = nc for elements c in the center Z(R) of R, and in this case tr(R) = Z(R).
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Example 2 (Orders). A matrix algebra Mn(C) over a commutative ring C is
a Cayley–Hamilton algebra of degree n in a natural way. As trace map tr we
take the map sending a matrix to the sum of its diagonal elements (surprise!).
Now use the Cayley–Hamilton theorem.

An Azumaya algebra A over C of rank n2 is étale locally a matrix algebra
as above. Using the necklace property, we get that tr(aba−1) = tr(b). But this
means that tr descends to a map tr : A→ A. It can be checked locally that this
map satisfies all necessary properties. In particular each a ∈ A is a zero of its
own Cayley–Hamilton polynomial.

An order R over a commutative integrally closed domain C can be embedded
into an Azumaya algebra, for example in the central simple algebra A = R⊗CK,
where K is the fraction field of C. This yields a trace map tr : R → K and
it remains to show that tr(R) ⊆ C. We know that tr(R) is a subalgebra of K
containing C. It is moreover finitely generated as a C-module, because R is
finitely generated as C-module. But finite ring extensions are integral [Stacks,
Tag 00GH], so from the fact that C is integrally closed it follows that tr(R) = C.

Example 3 (Free Cayley–Hamilton algebras). To each algebra R, we can asso-
ciate a universal trace map π : R→ R/[R,R]. Here [R,R] is the linear subspace
of commutators {ab− ba | a, b ∈ R} ⊆ R. We use the notation

∮
R for the free

commutative ring Sym (R/[R,R]) and we write
∫
R = R ⊗

∮
R. The universal

trace map gives a trace map on
∫
R via tr(r ⊗ t) = π(r)t. It is easy to see that∫

: alg→ alg@ is the free functor, i.e. the left adjoint to the forgetful functor.
We can then construct a free degree n Cayley–Hamilton algebra on R by

considering
∫
R and adding the necessary relations tr(1) = n and χ

(n)
a (a) = 0.

We use the notation
∫
n
R for the resulting algebra, so

∫
n

: alg → alg@n is the
free functor.

Note that R/[R,R] is also known as the Hochschild homology HH0(R,R).

2 Trace preserving representations

For an algebra R, there is a scheme repn(R) with as D-points the n-dimensional
representations R → Mn(D). If R comes equipped with a trace map, then we
can consider the closed subscheme trepn(R) with as D-points the trace preserv-
ing representations R → Mn(D). Because the PGLn-action on Mn is trace
preserving, the PGLn-action on repn restricts to a PGLn-action on trepn(R).

Using the adjunction between free and forgetful functor, we see that the two
schemes are related by

repn(R) = trepn

(∫
R

)
= trepn

(∫
n

R

)
.

Moreover, to each PGLn-scheme X, we can associate its witness algebra

⇑n(X) = Mn(Γ(X,OX))PGLn

= {equivariant morphisms X → Mn(C)}.

Here Mn(C) is of course just An2

as a scheme, but the suggestive notation makes
the PGLn-action (by matrix conjugation) more clear.
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The witness algebra comes equipped with a trace map, inherited from the
matrix algebra Mn(Γ(X,OX)). If we interpret elements of ⇑n(X) as equivariant
morphisms f : X → Mn, then the trace map is given by

tr(f)(x) = tr(f(x)).

It is easy to check that this trace is again equivariant map. More precisely,
the traces of the witness algebra are precisely given by the diagonal matrices
Γ(X,OX)PGLn (i.e. the diagonal matrices in the witness algebra). Now it is
clear that the witness algebra is a Cayley–Hamilton algebra of degree n.

Theorem 4 (Procesi). The functor ⇑n is left inverse to trepn in the diagram

alg@n PGLn - schemes.

trepn

⇑n

(1)

Proof. See [Le 07] or Procesi’s paper [Pro87].

As an immediate consequence we find that
∫
n
R = ⇑n(repnR). Some other

useful corollaries are the following from [De +05].

Corollary 5.

1. If (R, tr) is in alg@n, then (R, k · tr) is in alg@kn.

2. If (R, trR) is in alg@n and (S, trS) is in alg@m, then (R⊗S, trR⊗ trS) is
in alg@nm.

3. If (R, trR) and (S, trS) are in alg@n, then (R× S, trR × trS) is in alg@n.

Proof. This is easy for R and S matrix algebras over a commutative ring. But by
Theorem 4, any Cayley–Hamilton algebra inherits its trace from such a matrix
algebra. For details, see [De +05].

3 Orders

We already saw that orders are Cayley-Hamilton algebras in a natural way. Now
we will try to specify which Cayley-Hamilton algebras come from orders.

Lemma 6. Let R be a Cayley–Hamilton algebra of degree n. The following are
equivalent.

1. trepn(R) is a PGLn-torsor.

2. R is an Azumaya algebra of constant rank n2.

Proof. Both PGLn-torsors over Spec(C) and Azumaya algebras over C are clas-
sified by H1(C,PGLn) and the correspondence is given by

A 7→ trepn(A) = repn(A),

see [Le 10].
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Note that the functor trepn : alg@nop → schemes has a left adjoint, given
by sending a scheme X to the Cayley–Hamilton algebra Mn(Γ(X,OX)). This
implies that trepn sends colimits in alg@n to limits in schemes. For example,
one can check that the diagram

R R⊗C K

C K

(2)

is a pushout in alg@n, for R a Cayley–Hamilton algebra for which tr(R) = C is
a domain with fraction field K. Applying trepn then gives a pullback diagram
of schemes

trepn(R⊗C K) trepn(R)

Spec(K) Spec(C)

(3)

But if R is an order, then R ⊗C K is a central simple algebra, in other words
trepn(R⊗CK) is a PGLn-torsor. So the PGLn-schemes corresponding to orders
stand out by generically being a PGLn-torsor. For the converse, suppose that
C is integrally closed. If trepn(R ⊗C K) is a PGLn-torsor then R ⊗C K is a
central simple algebra, so R is an order.
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