Cayley–Hamilton algebras

Jens Hemelaer

13/04/2016

This is a basic introduction to Cayley–Hamilton algebras in the spirit of [Le 07].

1 Definition

By "algebra" we mean a unital associative \mathbb{C} -algebra.

Definition 1. An algebra with trace (R, tr) is an algebra R together with a \mathbb{C} -linear function $tr : R \to R$, satisfying the following properties for all $a, b \in R$.

- 1. (Maps into center) tr(a)b = tr(b)a,
- 2. (Necklace property) tr(ab) = tr(ba),
- 3. (Linear w.r.t. traces) tr(tr(a)b) = tr(a)tr(b).

An algebra with trace (R, tr) is called *Cayley–Hamilton* of degree n if for all $a \in R$ it additionally satisfies:

- 1. tr(1) = n,
- 2. $\chi_a^{(n)}(a) = 0.$

The characteristic polynomial $\chi_a^{(n)}$ of a is defined as follows. If a would have been an $n \times n$ -matrix, then the characteristic polynomial has as coefficients symmetric polynomials in n variables x_1, \ldots, x_n (the eigenvalues of a). These symmetric polynomials are freely generated as a ring by the power sum polynomials $x_1^k + \cdots + x_n^k = \operatorname{tr}(a^k)$. This fact enables us to interpret each coefficient in a unique way in terms of traces. For example,

$$\chi_a^{(2)}(t) = t^2 - \operatorname{tr}(a)t + \frac{1}{2}\left(\operatorname{tr}(a)^2 - \operatorname{tr}(a^2)\right).$$

Algebras with trace can be made into a category alg@ with as arrows the trace preserving algebra maps. The full subcategory of degree n Cayley–Hamilton algebras is denoted by alg@n.

For a Cayley–Hamilton algebra R, the image $\operatorname{tr}(R) \subseteq R$ is a subalgebra of the center of R: it is clearly a linear subspace, and $\operatorname{tr}(a)\operatorname{tr}(b) = \operatorname{tr}(\frac{1}{n}\operatorname{tr}(a)\operatorname{tr}(b))$, which shows that the product of two elements in $\operatorname{tr}(R)$ again lies in $\operatorname{tr}(R)$. Often $\operatorname{tr}(c) = nc$ for elements c in the center Z(R) of R, and in this case $\operatorname{tr}(R) = Z(R)$.

Example 2 (Orders). A matrix algebra $M_n(C)$ over a commutative ring C is a Cayley–Hamilton algebra of degree n in a natural way. As trace map tr we take the map sending a matrix to the sum of its diagonal elements (surprise!). Now use the Cayley–Hamilton theorem.

An Azumaya algebra A over C of rank n^2 is étale locally a matrix algebra as above. Using the necklace property, we get that $tr(aba^{-1}) = tr(b)$. But this means that tr descends to a map $tr : A \to A$. It can be checked locally that this map satisfies all necessary properties. In particular each $a \in A$ is a zero of its own Cayley–Hamilton polynomial.

An order R over a commutative integrally closed domain C can be embedded into an Azumaya algebra, for example in the central simple algebra $A = R \otimes_C K$, where K is the fraction field of C. This yields a trace map tr : $R \to K$ and it remains to show that $tr(R) \subseteq C$. We know that tr(R) is a subalgebra of K containing C. It is moreover finitely generated as a C-module, because R is finitely generated as C-module. But finite ring extensions are integral [Stacks, Tag 00GH], so from the fact that C is integrally closed it follows that tr(R) = C.

Example 3 (Free Cayley–Hamilton algebras). To each algebra R, we can associate a universal trace map $\pi : R \to R/[R, R]$. Here [R, R] is the linear subspace of commutators $\{ab - ba \mid a, b \in R\} \subseteq R$. We use the notation $\oint R$ for the free commutative ring Sym(R/[R, R]) and we write $\int R = R \otimes \oint R$. The universal trace map gives a trace map on $\int R$ via $\operatorname{tr}(r \otimes t) = \pi(r)t$. It is easy to see that $\int : \operatorname{alg} \to \operatorname{alg}^0$ is the free functor, i.e. the left adjoint to the forgetful functor.

We can then construct a free degree n Cayley-Hamilton algebra on R by considering $\int R$ and adding the necessary relations $\operatorname{tr}(1) = n$ and $\chi_a^{(n)}(a) = 0$. We use the notation $\int_n R$ for the resulting algebra, so $\int_n : \operatorname{alg} \to \operatorname{alg}@n$ is the free functor.

Note that R/[R, R] is also known as the Hochschild homology $HH_0(R, R)$.

2 Trace preserving representations

For an algebra R, there is a scheme rep_n(R) with as D-points the n-dimensional representations $R \to M_n(D)$. If R comes equipped with a trace map, then we can consider the closed subscheme trep_n(R) with as D-points the *trace preserving* representations $R \to M_n(D)$. Because the PGL_n-action on M_n is trace preserving, the PGL_n-action on rep_n restricts to a PGL_n-action on trep_n(R).

Using the adjunction between free and forgetful functor, we see that the two schemes are related by

$$\operatorname{rep}_n(R) = \operatorname{trep}_n\left(\int R\right) = \operatorname{trep}_n\left(\int_n R\right).$$

Moreover, to each PGL_n -scheme X, we can associate its witness algebra

Here $M_n(\mathbb{C})$ is of course just \mathbb{A}^{n^2} as a scheme, but the suggestive notation makes the PGL_n-action (by matrix conjugation) more clear.

The witness algebra comes equipped with a trace map, inherited from the matrix algebra $M_n(\Gamma(X, \mathcal{O}_X))$. If we interpret elements of $\uparrow^n(X)$ as equivariant morphisms $f: X \to M_n$, then the trace map is given by

$$\operatorname{tr}(f)(x) = \operatorname{tr}(f(x)).$$

It is easy to check that this trace is again equivariant map. More precisely, the traces of the witness algebra are precisely given by the diagonal matrices $\Gamma(X, \mathcal{O}_X)^{\mathrm{PGL}_n}$ (i.e. the diagonal matrices in the witness algebra). Now it is clear that the witness algebra is a Cayley–Hamilton algebra of degree n.

Theorem 4 (Processi). The functor \Uparrow^n is left inverse to trep_n in the diagram

Proof. See [Le 07] or Procesi's paper [Pro87].

As an immediate consequence we find that $\int_n R = \uparrow^n(\operatorname{rep}_n R)$. Some other useful corollaries are the following from [De +05].

Corollary 5.

- 1. If (R, tr) is in alg@n, then $(R, k \cdot tr)$ is in alg@kn.
- 2. If (R, tr_R) is in alg@n and (S, tr_S) is in alg@m, then $(R \otimes S, \operatorname{tr}_R \otimes \operatorname{tr}_S)$ is in alg@nm.
- 3. If (R, tr_R) and (S, tr_S) are in alg@n, then $(R \times S, \operatorname{tr}_R \times \operatorname{tr}_S)$ is in alg@n.

Proof. This is easy for R and S matrix algebras over a commutative ring. But by Theorem 4, any Cayley–Hamilton algebra inherits its trace from such a matrix algebra. For details, see [De +05].

3 Orders

We already saw that orders are Cayley-Hamilton algebras in a natural way. Now we will try to specify which Cayley-Hamilton algebras come from orders.

Lemma 6. Let R be a Cayley–Hamilton algebra of degree n. The following are equivalent.

- 1. trep_n(R) is a PGL_n-torsor.
- 2. R is an Azumaya algebra of constant rank n^2 .

Proof. Both PGL_n -torsors over Spec(C) and Azumaya algebras over C are classified by $H^1(C, PGL_n)$ and the correspondence is given by

$$A \mapsto \operatorname{trep}_n(A) = \operatorname{rep}_n(A),$$

see [Le 10].

Note that the functor $\operatorname{trep}_n : \operatorname{alg}(\mathbb{Q}n^{\operatorname{op}} \to \operatorname{schemes} has a left adjoint, given$ $by sending a scheme X to the Cayley–Hamilton algebra <math>\operatorname{M}_n(\Gamma(X, \mathcal{O}_X))$. This implies that trep_n sends colimits in $\operatorname{alg}(\mathbb{Q}n)$ to limits in schemes. For example, one can check that the diagram

is a pushout in $\mathsf{alg}@n,$ for R a Cayley–Hamilton algebra for which $\mathrm{tr}(R)=C$ is a domain with fraction field K. Applying trep_n then gives a pullback diagram of schemes

But if R is an order, then $R \otimes_C K$ is a central simple algebra, in other words $\operatorname{trep}_n(R \otimes_C K)$ is a PGL_n -torsor. So the PGL_n -schemes corresponding to orders stand out by generically being a PGL_n -torsor. For the converse, suppose that C is integrally closed. If $\operatorname{trep}_n(R \otimes_C K)$ is a PGL_n -torsor then $R \otimes_C K$ is a central simple algebra, so R is an order.

References

- [De +05] C. De Concini et al. "Hopf algebras with trace and representations". In: *Invent. Math.* 161.1 (2005), pp. 1–44.
- [Le 07] Lieven Le Bruyn. Noncommutative Geometry and Cayley-smooth Orders. Vol. 290. Pure and Applied Mathematics. 592 pages. Chapman and Hall / CRC, 2007.
- [Le 10] Lieven Le Bruyn. Representation stacks, D-branes and noncommutative geometry. arXiv:math.RA/1009.5203. 2010.
- [Pro87] Claudio Procesi. "A formal inverse to the Cayley-Hamilton theorem". In: J. Algebra 107.1 (1987), pp. 63–74.
- [Stacks] The Stacks Project Authors. *Stacks Project*. http://stacks.math.columbia.edu. 2016.