
Spectral sequences: an Introduction

Frederik Caenepeel

In these notes we introduce the notion of a spectral sequence and give some basic prop-
erties. Even from the definition of a spectral sequence itself, things could appear very
technical, so some of the proofs and details will be omitted. For example, the Com-
plete Convergence Theorem will not be studied in detail, as it is not directly needed.
On the other hand, some known properties like the Universal Coefficient Theorem will
be shown using spectral sequences in order to motivate their use and to get more fa-
miliar with the subject. We basically follow [2, Ch. 5], but also recommend [1, Ch.
XI].

1 Terminology
Definition 1.1 A homology spectral sequence (starting with Ea, a ≥ 0) in an abelian
category A consist of the following data:

1. A family {Er
pq} of objects of A defined for all integers p, q and r ≥ a;

2. Maps dr
pq : Er

pq→ Er
p−r,q+r−1 that are differentials in the sense that drdr = 0, so

that the lines of slope (1− r)/r in the lattice Er
∗∗ form chain complexes in A ;

3. Isomorphisms between Er+1
pq and the homology of Er

∗∗ at the spot Er
pq:

Er+1
pq
∼= Ker(dr

pq)/Im(dr
p+r,q−r+1).

The total degree of the term Er
pq is n = p+q, so the terms of total degree n lie on a line

of slope −1, and each differential dr
pq decreases the total degree by one.

A morphism f : E→ E ′ between two homology spectral sequences is a family of maps
f r
pq : Er

pq→ E ′rpq in A (for r suitably large) with dr f r = f rdr and such that each f r+1
pq is

the map induced by f r
pq on homology. It follows easily that there exists a category of

homology spectral sequences in any abelian category A .

Er+1
pq
∼= Ker(dr

pq)/Im(dr
p+r,q−r+1) is a subquotient of Er

pq, so we obtain a nested family
of subobjects of Ea

pq:

0 = Ba
pq ⊆ ·· · ⊆ Br

pq ⊆ Br+1
pq ⊆ ·· · ⊆ Zr+1

pq ⊆ Zr
pq ⊆ ·· · ⊆ Za

pq = Ea
pq

such that Er
pq
∼= Zr

pq/Br
pq. Indeed, for r > a consider

Zr
p+r,q−r+1/Br

p+r,q−r+1
dr

p+r,q−r+1−→ Zr
pq/Br

pq
dr

pq−→Zr
p−r,q+r−1/Br

p−r,q+r−1.

Then Er+1
pq
∼= Zr+1

pq /Br+1
pq , where Zr+1

pq /Br
pq =Ker(dr

pq), Br+1
pq /Br

pq = Im(dr
p+r,q−r+1) and

Br+1
pq ⊆ Zr+1

pq , by which
Br

pq ⊆ Br+1
pq ⊆ Zr+1

pq ⊆ Zr
pq.
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Therefore dh (y) is a vertical cycle in Cp_ 2 q+l and determines a class z = 
[dh(y)] E 

Cp-2 q+l +-- Cp-1 q+l 

1 
Cp-1q +-- Cpq 

Let us compute d1(z), 

Therefore z is a cycle (for d1 ) and determines an element d2 [ x] : = [ z] E 
FJ,-2 q+l· We leave to the reader the task of proving that the resulting map 
d"' : E;q E;_2 q+l is well-defined (independent of the choice of x for in-
stance) and that it is a differential. 

Note that in the notation the figure 2 is an index and does not mean 
do d here. 

D.3 The Spectral Sequence. The first part of the theory of spectral se-
quences consists in proving that the construction of (E2 , can be pushed 
further to get an infinite sequence of modules E;q and differentials d: : E;q 
E;_r q+r-1 related to one another by the condition 

q 

p 

Note that if, for some fixed (p, q), it ever happens that E;q = O for some 
r, then = O for any r' :2: r. In particular, since Cpq = O for p < O or 
q < O, it follows that E;q = O for p < O or q < O, any r. As a consequence, 
for fixed (p, q), the differentials ending at and starting from E;q are O if r is 
large enough (say r = r(p,q)) and therefore 

for r :2: r(p, q). 

E r _ Er+1 _ _ E"" pq- pq - ... - pq 

Figure 1: The differentials of a homology spectral sequence.

If our abelian category A is complete and cocomplete (e.g. A = RM ), we introduce
the intermediate objects

B∞
pq =

∞⋃
r=a

Br
pq and Z∞

pq =
∞⋂

r=a
Zr

pq

and define E∞
pq = Z∞

pq/B∞
pq. We say that the spectral sequence abuts to E∞

pq. We consider
the terms Er

pq of the spectral sequence as successive approximations (via successive
formation of subquotients) to E∞

pq.

Example 1.2 A first quadrant (homology) spectral sequence is one with Er
pq = 0 unless

p≥ 0 and q≥ 0, that is, the point (p,q) belongs to the first quadrant of the plane. At the
r-stage, the differentials dr

∗∗ go r columns to the left and r−1 rows up, so for suitably
large r all differentials ds

∗∗ for s≥ r leaving and ending at the (p,q)-spot are zero (take
for example r > (p+1)∨ (q+2)). This means that Er

pq is ultimately constant in r and
for this stabilized value we clearly have that it equals E∞

pq.

We also have a cohomological analogue:

Definition 1.3 A cohomology spectral sequence (starting with Ea, a≥ 0) in an abelian
category A is a family {E pq

r } of objects (r ≥ a, p,q ∈ Z), together with maps dpq
r :

dpq
r : E pq

r → E p+r,q−r+1
r ,

which are differentials and give isomorphisms between Er+1 and the homology of Er.

For such a spectral sequence, the differential d∗∗r increases the total degree p+q of E pq
r

by one and one defines the objects Bpq
∞ ,Zpq

∞ and E pq
∞ analogously.

Let’s consider a special type of spectral sequences, namely the bounded ones.

Definition 1.4 A homology spectral sequence is said to be bounded if for each n there
are only finitely many nonzero terms of total degree n in Ea

∗∗.
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q 

o 

p 

o 

Let us now consider the homology of the total complex Tot C**. There is 
a canonica! increasing filtration on this complex obtained by taking the first 
columns: 

(FiTot C**)n = EB Cpq . 
p+q=n 

p<i 

This induces an increasing filtration (stiH denoted Fi) onAn= Hn(Tot C**), 

D.4 Theorem. The modules and the filtered module An= Hn(Tot C**) 
are related by 

o 
In the literature this theorem is often written under the following form: 

there exists a spectral sequence 

E;q = H;(H:(c**))::::} Ap+q = Hp+q(TotC**). 

The symbol ::::} is to be read "converges to". Most of the time the filtration of 
the abutment An is not specified, but in many applications it is not needed 
(see for instance D.6 to D.9). 

Note that one could take on Tot C** the filtration by columns. This would 
give a second spectral sequence of the form 

= H;(H;(C**))::::} Ap+q = Hp+q(Tot C**) . 

Though the abutment An is the same, the filtration is, in general, different. 

D.5 Leray-Serre Spectral Sequence. There are more general data giving 
rise to spectral sequences. In particular, instead of starting with a bicomplex, 
one can start with a filtered complex. Hence one can define E 1 , E 2 , etc and 
Theorem D.4 expresses the relation between the homology of the graded 
complex versus the graded module of the homology of the complex. 

In particular let 

Figure 2: dr
pq ultimately becomes zero.

Because dr
∗∗ decreases the total degree by one this means that for all p and q there is

an r0 such that Er
pq = Er+1

pq for all r ≥ r0. As in the example of a first quadrant spectral
sequence this stable value equals E∞

pq. For such spectral sequences we introduce the
notion of convergence

Definition 1.5 A bounded spectral sequence {Er
pq} converges to H∗ if there exists a

family of objects Hn of A , each having a finite filtration

0 = FsHn ⊆ ·· · ⊆ Fp−1Hn ⊆ FpHn ⊆ Fp+1Hn ⊆ ·· · ⊆ FtHn = Hn,

such that E∞
pq
∼= FpHp+q/Fp−1Hp+q. We write down this bounded convergence by

Ea
pq⇒ Hp+q.

Dually, a cohomology spectral sequence is called bounded if there are only finitely
many nonzero terms in each total degree in E∗∗a and such a spectral sequence converges
to H∗ if there is a finite filtration for each n

0 = F tHn ⊆ ·· · ⊆ F p+1Hn ⊆ F pHn ⊆ ·· · ⊆ FsHn = Hn,

with
E pq

∞
∼= F pH p+q/F p+1H p+q.

Example 1.6 Let {Er
pq} be a first quadrant homology spectral sequence, which con-

verges to H∗. Because for any n we have

E∞
p,n−p = 0 for p≤ 0 or p > n,

Hn has a finite filtration of length n+1:

0 = F−1Hn ⊆ F0Hn ⊆ ·· · ⊆ Fn−1Hn ⊆ FnHn = Hn.
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The bottom piece F0Hn =E∞
0n is located on the y-axis, and the top quotient Hn/Fn−1Hn∼=

E∞
n0 is located on the x-axis. Since each arrow landing on the x-axis is zero, and each

arrow leaving the y-axis is zero, each E∞
n0 is a subobject of Ea

n0 and each E∞
0n is a quo-

tient of Ea
0n. The terms Er

n0 on the x-axis are called the base terms and the terms Er
0n on

the y-axis are called the fiber terms. The resulting maps

Hn→ E∞
n0 ⊆ Ea

n0,

and
Ea

0n→ E∞
0n ⊆ Hn

are known as the edge homomorphisms of the spectral sequence.

Definition 1.7 A spectral sequence collapses at Er (r ≥ 2) if there is exactly one
nonzero row or column in the lattice Er

∗∗.

If a bounded collapsing spectral sequence converges to H∗, we can read the Hn off: it
is the unique nonzero Er

pq with p+ q = n. By this, we are highly interested in col-
lapsing spectral sequences at stage 1 or 2. Moreover, we say that a spectral sequence
{Er

pq} (r ≥ a) degenerates at sheet r if for all s ≥ r the differentials ds
∗∗ are all zero.

This means of course that Er
pq = E∞

pq. Obviously, there’s a dual notion for cohomology
spectral sequences.

Another application will lie in exact sequences some special spectral sequences offer.

Lemma 1.8 (2 columns) For a bounded homology spectral sequence converging to
H∗ and having E2

pq = 0 unless p = 0 or 1, there are short exact sequences

0→ E2
0n→ Hn→ E2

1,n−1→ 0.

Proof. Because the differentials ds
∗∗ go s columns to the left and s−1 rows up, we see

that the spectral sequence degenerates at r = 2, whence

E∞
pq = E2

pq.

Fix n. By definition of convergence, for all p 6= 0,1

0 = E∞
p,n−p

∼= FpHn/Fp−1Hn⇒ FpHn = Fp−1Hn, (1)

by which E∞
0,n = F0Hn, because by (1) F−1Hn = F−2Hn = · · ·= 0.

This implies
E∞

1,n−1
∼= Hn/E∞

0,n. (2)

Define

E2
0n

= //

f

((
E∞

0n
� � // Hn

and
Hn

g

44
// // E∞

1,n−1
� � // E2

1,n−1

By (2) the sequence
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0→ E2
0n

f−→Hn
g−→E2

1,n−1→ 0

is indeed exact (In fact, the maps f and g are just edge homomorphisms). 2

There is a dual statement for cohomolgy spectral sequences in which the arrows are
reversed. We will state the following similar lemma in this framework.

Lemma 1.9 (2 rows) For a bounded cohomology spectral sequence converging to H∗

and having E pq
2 = 0 unless q = 0 or r > 0, there is a long exact sequence

· · · → Hn→ En−r,r
2

dr+1−→ En+1,0
2 → Hn+1→ ·· ·

In practice the spectral sequences that pop up aren’t always bounded, so one has to
introduce more general types of such sequences. To begin with

Definition 1.10 A homology spectral sequence is said to be bounded below if for each
n there is an integer s = s(n) such that the terms Ea

pq of total degree n vanish for all
p < s.
Dually, a cohomology spectral sequence is said to be bounded below if for each n the
terms of total degree n vanish for large p. Moreover, the dual notion of bounded above
also exists in both frameworks.

Clearly bounded spectral sequences are also bounded below. Right half-plane homol-
ogy spectral sequences are bounded below but not bounded. Dually, left half-plane
cohomology spectral sequences are bounded below but not bounded.

In general, one can define convergence of a spectral sequence, but we will not go deeper
in this as it requires some technical notions.

2 Spectral Sequence of a Filtration and Convergence
Theorem

Let C∗ be a chain complex in an abelian category A . By a filtration F of C we mean
an ordered family of chain subcomplexes · · · ⊆ Fp−1C ⊆ FpC ⊆ ·· · of C. We have the
following

Theorem 2.1 (Construction Theorem) A filtration F of a chain complex C naturally
determines a spectral sequence starting with E0

pq = FpCp+q/Fp−1Cp+q and E1
pq =

Hq(E0
p∗). Moreover, the differentials are induced by the differential of C.

Again, we have special types of filtrations: we call a filtration bounded if for each n
there are integers s < t such that FsCn = 0 and FtCn = Cn. In this case there are only
finitely many nonzero terms of total degree n in E0

∗∗, so the associated spectral sequence
is bounded. Subsequently, a filtration on C is called bounded below if for each n there is
an integer s = s(n) such that FsCn = 0, and it is called bounded above if for each n there
is a t = t(n) such that FtCn =Cn. A filtration is exhaustive if C = ∪FpC, so we see that
bounded above implies exhaustive. Finally, a filtration is called canonically bounded if
F−1C = 0 and FnCn =Cn for each n. For the associated spectral sequence it holds E0

pq =
FpCp+q/Fp−1Cp+q. Bounded below and exhaustivity are highly appreciated properties,
because we have the following theorem:
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Theorem 2.2 (Classical Convergence Theorem) 1. Suppose that the filtration on
C is bounded. Then the spectral sequence is bounded and converges to H∗(C):

E1
pq = Hq(FpC/Fp−1C)⇒ Hp+q(C);

2. Suppose that the filtration on C is bounded below and exhaustive. Then the spec-
tral sequence is bounded below and also converges to H∗(C).

Moreover, the convergence is natural in the sense that if f : C→C′ is a map of filtered
complexes, then the map f∗ : H∗(C)→ H∗(C′) is compatible with the corresponding
map of spectral sequences.

3 Spectral sequences of a double complex
Definition 3.1 Let A be an abelian category. A bicomplex or double chain complex
C = C∗∗ in A is a collection of objects Cp,q of A indexed by two integers p and q
together with a horizontal differential dh : Cpq→Cp−1,q and a vertical differential dv :
Cpq→Cp,q−1

Cp−1,q

dv

��

Cpq
dh

oo

dv

��
Cp−1,q−1 Cp,q−1

dh
oo

satisfying the following identities

dvdv = dhdh = dvdh +dhdv = 0.

Associated to a bicomplex there is a product total complex defined by

(TotΠC∗∗)n := Πp+q=nCpq

with differential d = dh +dv. The homology groups Hn(TotΠC) are called the homol-
ogy groups of the bicomplex C.

There are two filtrations associated to every double (chain) complex C =C∗∗, resulting
in two spectral sequences related to the homology of Tot(C). Playing these spectral se-
quences off against each other will come in handy in calculating homology. Evidently,
all the following dualizes for double cochain complexes.
Firstly, we can filter the (product or direct sum) total complex Tot(C) by the columns
of C, denoting by IFnTot(C) the total complex of the double subcomplex

(ICτ≤n)pq =

{
Cpq if p≤ n

0 if p > n

· · · ∗ ∗ 0 0
· · · ∗ ∗ 0 0
· · · ∗ ∗ 0 0
· · · ∗ ∗ 0 0

of C. From the Construction Theorem this gives rise to a spectral sequence {IEr
pq},

starting with

IE0
pq =

IFpTot(C)p+q
IFp−1Tot(C)p+q

=

⊕
k+l=p+q(

ICτ≤p)kl⊕
k+l=p+q(

ICτ≤p−1)kl

=

⊕
k≤p Ck,n−k⊕

k≤p−1 Ck,n−k
=Cpq.
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The maps d0
pq : Cpq → Cp,q−1 are induced by the differential of Tot(C), hence equals

the vertical differential dv of C, whence

IE1
pq = Hv

q(Cp∗).

Subsequently, the maps d1 : Hv
q(Cp∗)→Hv

q(Cp−1,∗) are induced on homology from the
horizontal differentials dh of C, so (suggestive notation)

IE2
pq = Hh

pHv
q(C).

If C is a first quadrant double complex, the filtration is canonically bounded, and we
have by the Classical Convergence Theorem the convergent spectral sequence

IE2
pq = Hh

pHv
q(C)⇒ Hp+q(Tot(C)).

Secondly, we filter by the rows, denoting by IIFnTot(C) the total complex of

(IICτ≤n)pq =

{
Cpq if q≤ n

0 if q > n

0 0 0 0 0 0
0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

In this case the associated spectral sequence {IIEr
pq} starts with

IIE0
pq =

IIFpTot(C)p+q
IIFp−1Tot(C)p+q

=

⊕
k≤p Cn−k,k⊕

k≤p−1 Cn−k,k
=Cqp.

Observe the interchange of p and q! Hence d0 = dh, so IIE1
pq = Hh

q (C∗p). The maps d1

are induced from the vertical differentials dv of C, so

IIE2
pq = Hv

pHh
q (C).

As before, if C is a first quadrant double complex, this filtration is canonically bounded,
and the spectral sequence converges to H∗Tot(C). Hence such types of double com-
plexes are highly attractive, for they provide two spectral sequences converging to the
same objects.

Lemma 3.2 Let A and B be abelian categories and F : A → B an exact covariant
functor. If (A,δ) is a (co)chain complex in A , then

H∗F(A)∼= F(H∗(A)),

respectively
H∗F(A)∼= F(H∗(A)).

Proof. Let’s proof the lemma for a cochain complex

· · · → An−1
δn−1−→An→ ···

By exactness of F , the sequences

0→ F(Ker( f ))→ A
F( f )−→B and F(A)

F( f )−→F(Im( f ))→ 0
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are exact for a morphism f : A→ B, whence

Ker(F( f ))∼= F(Ker( f )) and Im(F( f ))∼= F(Im( f ))

From this we obtain

H∗F(A) =
Ker(F(δn))

Im(F(δn−1))
∼=

F(Ker(δn))

F(Im(δn−1))
.

The following short exact sequence

0→ Im(δn−1)→ Ker(δn)→ Hn(A)→ 0

yields
F(Hn(A))∼= F(Ker(δn))/F(Im(δn−1)),

finishing the proof. The proof for chain complexes is exactly the same. 2

The same result holds for contravariant functors.

Proposition 3.3 (Künneth spectral sequence) Let P∗ be a bounded below chain com-
plex of projective left R-modules and M an R-module. Then there is a boundedly con-
verging right half-plane cohomology spectral sequence

E pq
2 = Extp

R(Hq(P),M)⇒ H p+q(RHom(P,M)).

Proof. Let M→Q∗ be an injective resolution and consider the upper half-plane double
cochain complex RHom(P,Q), which looks like

...
...

· · · // RHom(P−p+1,Qq+1)

OO

// RHom(P−p,Qq+1)

OO

// · · ·

· · · // RHom(P−p+1,Qq)

OO

// RHom(P−p,Qq)

OO

// · · ·

...

OO

...

OO

(recall the sign convention P−p = Pp). The first filtration is complete, bounded above
(P∗ bounded below), whence regular and exhaustive so the conditions of the Complete
Convergence Theorem are satisfied. Moreover,

IE pq
1 = Hq(RHom(P−p,Q))∼= RHom(P−p,Hq(Q)),

where we used projectivity of P−p and Lemma 3.2. So

IE pq
2 =

{
H p(RHom(P,M)) if q = 0

0 otherwise
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This means that the spectral sequence collapses at r = 2 and

H p(RHom(P,M))∼= H p(RHom(P,Q)).

The second filtration is bounded below and exhaustive for the direct sum total complex.
Since Qq is injective, the contravariant analogue ofLemma 3.2 yields

IIE pq
1 = Hq(RHom(P∗,Qp))∼= RHom(Hq(P∗),Qp).

Hence
IIE pq

2 = Extp
R(Hq(P),M)

finishing the proof. 2

From this we get a direct proof of

Theorem 3.4 (Universal Coefficient Theorem for Cohomology) Let (P,δ) be a chain
complex of projective R-modules such that each δ(Pn) is also projective. Then for every
n and every R-module M, there is an exact sequence

0→ Ext1R(Hn−1(P),M)→ Hn(RHom(P,M))→ RHom(Hn(P),M)→ 0.

Proof. Since δ(Pn) is projective, the exact sequence

0→ Zn→ Pn
δ−→δ(Pn)→ 0

splits, so Pn ∼= Zn⊕δ(Pn), showing that Zn is projective as well. This implies that

0→ δ(Pq+1)→ Zq→ Hq(P)→ 0

is a projective resolution of Hq(P). The 2-stage filtration of the spectral sequence of
Proposition 3.3 thus has only nonzero columns for p = 0 and 1 and looks like

...
...

...
...

...
...

0 0 RHom(Hq(P),M) Ext1R(Hq(P),M) 0 0
0 0 RHom(Hq−1(P),M) Ext1R(Hq−1(P),M) 0 0
...

...
...

...
...

...

The short exact sequence of Lemma 1.8 looks like

0→ Ext1R(Hn−1(P),M)→ Hn(RHom(P,M))→ RHom(Hn(P),M)))→ 0.

2

As another example, let us prove following fundamental result in homological algebra
by using spectral sequences

Proposition 3.5 Let
0→ A→ B→C→ 0

be a short exact sequence of cochain complexes in an abelian category A . There exists
a long exact sequence of cohomology groups

· · · → Hn(A)→ Hn(B)→ Hn(C)→ Hn+1(A)→ ···
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Proof. For the filtration by rows, the first sheet IIE∗∗1 is zero, so the spectral sequence
{IE pq

r } converges to zero (the filtration is bounded). For the filtration by columns, the
first sheet IE∗∗1 has the form

...
...

...
...

...
...

...
0 0 Hn(A)

f n

−→ Hn(B)
gn

−→ Hn(C) 0 0

0 0 Hn−1(A)
f n−1
−→ Hn−1(B)

gn−1
−→ Hn−1(C) 0 0

...
...

...
...

...
...

...

Then the second sheet IE∗∗2 is of the form

0

''

0

''

??

''
0

''

0

''

??

''

?

''

??

''0 0 ??

''

?

''

??

''

0 0

?? 0 0

All maps from and to the single question marks are to and from 0-entries, so they
stabilize. Because the spectral sequence converges to zero, these questions marks itself
have to be zero. This show exactness of

Hn(A)
f n

−→Hn(B)
gn

−→Hn(C)

After the third sheet, the double-question-mark terms will stabilize as well. Again,
because of the convergence to zero, the arrows in IE∗∗2 between the double-question-
mark terms have to be isomorphisms. Denote them

Coker(gn−1)
ϕ−→Ker( f n)

This allows us to define a map

Hn−1(C)
∂−→Hn(A), c 7→ ϕ([c])

We conclude because

Ker(∂) = {c|[c] = 0 in Coker(gn−1)}= Im(gn−1)

and
Im∂ = Imϕ = Ker( f n)

2

4 Grothendieck spectral sequences
Define for a chain complex (C,δ), the complexes

Z′p = Coker(Cp
δ−→Cp−1) and B′p = Coim(Cp

δ−→Cp−1).
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Definition 4.1 Let A be an abelian category with enough projectives. A left projective
resolution or a left Cartain-Eilenberg resolution (CE resolution) P∗∗ of a complex A∗ is
an upper half-plane double complex (Ppq = 0 if q < 0) with augmentation ε : P∗0→ A∗
and for which the following left complexes

(1)p Pp∗ over Ap
(2)p Zp(P,dh) over Zp(A)
(3)p Z′p(P,d

h) over Z′p(A)
(4)p Bp(P,dh) over Bp(A)
(5)p B′p(P,d

h) over B′p(A)
(6)p Hp(P,dh) over Hp(A)

are all projective resolutions.

Fortunately there’s an equivalent (lesser) condition

Proposition 4.2 If for all p, (4) and (6) are projective resolutions, then P∗∗ is a left
projective resolution of A∗.

For the cohomological framework one first defines right Cartan-Eilenberg resolutions
of cochain complexes A in an abelian category A with enough injectives. These are
upper-half plane complexes I∗∗ of injective objects of A together with an augmentation
ε : A∗→ I∗0 such that the maps on coboundaries and cohomology are injective resolu-
tions of Bp(A) and H p(A). They permit us to define for a left exact functor F : A → B
(B complete) the right hyper-derived functors RiF to be HiTotΠ(F(I)).
For a cochain complex A in A the two spectral sequences arising from the upper half-
plane double cochain complex F(I) become

IIE pq
2 = (RpF)(Hq(A))⇒ Rp+qF(A)

and (if A is bounded below)

IE pq
2 = Hp(RqF(A))⇒ Rp+qF(A).

Example 4.3 Let X be a topological space and F ∗ a cochain complex of sheaves on X .
The hypercohomology Hi(X ,F ∗) is RiΓ(F ∗) where Γ is the global sections functor.
The hypercohomology spectral sequence is IIE pq

2 = H p(X ,Hq(F ∗))⇒Hp+q(X ,F ∗).

Consider abelian categories A ,B and C such that both A and B have enough injectives.
Let G : A → B and F : B → C be two left exact functors.

A G //

FG ��

B

F��
C

Theorem 4.4 (Grothendieck Spectral Sequence) Given the above setup and suppose
that G sends injective objects of A to F-acyclic objects of B (that is, RiF(B) = 0 for
i 6= 0). Then there exists a convergent first quadrant cohomology spectral sequence in
C for each A ∈ Ob(A):

IE pq
2 = (RpF)(RqG)(A)⇒ Rp+q(FG)(A).
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Proof. Choose an injective resolution A→ I∗ of A in A and apply G to get a cochain
complex G(I) in B . Subsequently, use a (right) Cartan-Eilenberg resolution of G(I) to
form the hyper-derived functors RnF(G(I)). Because G(I) is bounded below, there are
two spectral sequences converging to these hyper-derived functors. The first spectral
sequence is

IE pq
2 = H p((RqF)(G(I)))⇒ (Rp+qF)(G(I)).

Each G(Ik) is F-acyclic, so (RqF)(G(Ip)) = 0 for q 6= 0. We see that this spectral
sequence collapses at r = 2 yielding

(RpF)(G(I))∼= Hp(FG(I)) = Rp(FG)(A).

The second spectral sequence is therefore

IIE pq
2 = (RpF)(Hq(G(I)))⇒ Rp+q(FG)(A).

Since Hq(G(I)) = RqG(A), this amounts to the Grothendieck spectral sequence. 2

Example 4.5 Let R,S be commutative rings, f : R→ S a ring morphism and B an
S-module. The functors

RM RHom(S,−)−→ SM SHom(B,−)−→ Ab

satisfy the hypotheses. Indeed, The first functor is right adjoint to the functor

F : SM → RM

which restricts scalars through f . Because kernels and images aren’t effected by the R-
or S-linearity, this functor is exact, so RHom(S,−) is left exact and preserves injectives
(see Weibel proposition 2.3.10). The second functor is right adjoint to

G : Ab→ SM ;G(N) = B⊗Z N.

There is a natural isomorphism FG(A) = SHom(B,RHom(S,−)) ∼= RHom(B,−) and
since both functors are left exact their right derived functors correspond. The Grothendieck
spectral sequence thus takes the form

Extp
S(B,ExtqR(S,A))⇒ Extp+q

R (B,A).

References
[1] S. Mac Lane, Homology, Die Grundlehren der Mathematischen Wissenschaften

114, Springer-Verlag, Berlin, 1963.

[2] C. Weibel, An introduction to homological algebra, Cambridge University Press,
Cambridge, 1994.

12


